Introduction

The liver is the largest solid organ of the body that have multi-function in which some is the very important such as metabolism and detoxification of xenobiotics [1,2]. Every day we are exposed to various toxic chemicals intentionally or unintentionally by breathing air, drinking water, eating food or drug etc and increasing the chemical burden on the human body especially for the liver. Plastic, chemicals, drugs and lifestyle certainly responsible for increase the burden of liver [3]. In the Fourth National Report on Human exposure to environmental chemicals, the Centre for Disease control(CDC) USA reported that the average person in the USA has at least 212 chemicals in their blood and urine that actively contribute the chemical burden on the body [4]. Thus, our lifestyle is directly or indirectly responsible to increase the liver disease burden in human body. Our body has a self-cleansing mechanism which helps to clear the burden of xenobiotics from the body by detoxification process, but the continuous exposure of drug/chemical lead to accumulation and resulted in variety of liver problem [5]. In spite of that chemical, drug or some biological infection such as bacterial, viral, parasitic also responsible for severe liver diseases [6]. There are more than hundred different kinds of liver diseases, some of them is serious and life threatening such as liver cancer. Nanomedicine is playing very effective an alternative potential agent to overcome the liver diseases by targeting the different pathway, such as hepatocytes, macrophages, receptor, intracellular molecular network and hepatocellular carcinoma. There are very few Nanomedicine is available in the market and fews are under a clinical trial to treat the various liver problem. Therefore, there is further need to focus and explore the variety of Nanomedicine to treat the liver diseases including the liver cancer.

Discussion

The application of nanoparticle has been emerging as a potential, delivering targeted drugs to treat various liver diseases [8]. Advancement of nanotechnology has been open a new gateway to improve the targeted and delivery of drug to treat the various diseases. Present review design to focus and understand the effect of Nanomedicine in perspective of liver diseases specially hepatocellular carcinoma [9]. The advancement of Nanomedicine will helps to improve the therapeutic index of anticancer drug via modulation of pharmacokinetics and tissue distribution to targeted delivery [10]. Nanomedicine can be easily targeted to the hepatocytes in case in viral, fungal, bacterial, parasitic infection of liver diseases [11,12]. It also may be targeted as macrophages, hepatocellular carcinoma. Therefore, the Nanomedicine attracting the scientific community to think and continue the research to overcome with the different kind of diseases. Now the updated progress in this field is that some of Nanomedicines are in clinical trial phase while some are already available in the market with a different brand name. The first
liposomal doxorubicin (Doxil TM /Caelyx Tm) was the first anti
cancer Nanomedicine approved by the FDA in 1995. The other
Nanomedicine named Irinotecan brand Onivyde Merrimack
Pharmaceuticals is approved for the use of pancreatic cancer
while some of the nano drug such as Doxorubicine brand Therm
DoxTM/Celsion can used as primary hepatocellular carcinoma
which is under final trial. A drug named Oxaliplatin brand name
MBP-426/Mebiopharm is also under the clinical trial of phase
–II which will be used for gastrointestinal adenocarcinoma. Thus
the Nanomedicine is effective to over the liver disease.

Conclusion
The Nanomedicine is an exciting and promising field
of research for the treatment of liver diseases and it can be
contributed significant role towards the targeted delivery of
various hepatic diseases. There is further need to continue the
research to find out the more economical, suitable and safer
Nanomedicine to fight the various kinds of liver problem.

References
27: 147-163.
Repeated Exposure of sodium tellurite on the rat liver and on the
potential mechanisms of the metalloid-induced hepatotoxicity. Acta
Pol Pharm 5(73): 675-682.
2063-2078.
Environmental Chemicals.
methods and for public health. BMC Med 12: 159.
Mol Pharm 8(6): 2101-2141.
for overcoming biological barriers to drug delivery. Nat Biotechnol
33(9): 941-951.
et al. (2013) Challenges and key considerations of the enhanced
permeability and retention effect for Nanomedicine drug delivery in
11. Sivakumar SM (2016) Therapeutic potential of chitosan nanoparticles
as antibiotic delivery system: challenges to treat multiple drug
(2013) The big picture on nanomedicine: the state of investigational