Carotid Baroreflex Stimulation in Rats: A Novel Approach to Investigate resistant Hypertension and Immunity Responses

*Domingos-Souza G1 and Munhoz FC2

1Department of Biomedical Sciences, University of Missouri, USA
2Antonio Carlos President Institute, Brazil

Submission: September 14, 2017; Published: September 22, 2017

*Corresponding author: Domingos-Souza Gean, Department of Biomedical Sciences, Department of Medical Pharmacology and Physiology, Dalton Cardiovascular Research Center, University of Missouri 134 Research Park Drive, Columbia, MO, 65211, USA, Tel: +1 352 815 6797; E-mail: geandomingosusp@gmail.com

Abstract

Little is known about correlation of cardiovascular and inflammatory reflex. Electric activation of the carotid sinus (CS), also known as baroreflex activation therapy (BAT), have been used as an effective technology for controlling AP in patients with resistant hypertension. Up to date, therapeutic efficacy of BAT has been evaluated mostly in humans and canine model. The lack of an appropriate animal model can be a limiting factor to understanding details of mechanisms involved with cardiovascular system and immune responses. Recent studies in awake rats have clearly demonstrated that BAT evokes hemodynamic and immunological responses; however, its mechanism is not known. Thus, further studies utilizing this animal model may offer an important tool to clarify the mechanisms involved in the responses evoked by recruitment of autonomic nervous system and immune system mediated by the cardiovascular and inflammatory reflex.

Keywords: Baroreflex, Arterial Pressure, Resistant Hypertension, Electrical Stimulation, Inflammatory Reflex.

Abbreviations: CS: Carotid Sinus; BAT: Baroreflex Activation Therapy; AP: Arterial Pressure; CNS: Central Nervous System; NTS: Nucleus of the Solitary Tract; SHR: Spontaneous Hypertensive Rat; LPS: lipopolysaccharide

Introduction

Baroreflex Mechanism

Arterial baroreceptor reflex system is one of the most efficient and accurate mechanisms for controlling the arterial pressure (AP) and autonomic nervous system activity [1]. Variations in AP lead to distend arteries, stretching of carotid and aortic baroreceptors. These responses generate action potentials that are conveyed to medullary brainstem nuclei via the glossopharyngeal and vagus nerves. Along these nerves, these signals are projected directly into the central nervous system (CNS) to contact with neurons within the nucleus of the solitary tract (NTS) in the brainstem. After these signals arrive in the brainstem, the autonomic nervous system (via efferent parasympathetic and sympathetic nerves) is recruited to compensate the change in AP. Thus, the baroreflex is an important short-term regulatory system for the control of AP and this reflex mechanism is maintained in a narrow range of oscillation [2,3]. Damage in afferents or efferent baroreceptors is known to result in baroreflex and autonomic failure [4].

Electrical Stimulation of Peripheral Nerves

Several studies have been conducted to assess the effects of peripheral nerve stimulation as a treatment for diverse health conditions, in particular for those that no other therapy is available or conventional treatments are not entirely functional. This treatment is based on electrical stimulation of peripheral nerves that rely on the generation of action potentials in response to the flow of electrical current [5]. The stimulation of vagus nerve has been widely applied for use in depression [6], migraine [7], heart failure [8], morbid obesity [9], and inflammation [10] among others [11].

Baroreflex Activation Therapy (Bat) and Resistant Hypertension

Resistant hypertension is defined as AP that remains above established limits despite the concurrent use of three different antihypertensive agents of different classes, one of which should be a diuretic [12]. Given the limitation of pharmacological thera-
Acknowledgment

We thank Fernanda Pohl-Guimaraes for assistance.

References


