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Background

Artificial intelligence (AI), motivated by its potential to enhance 
patient outcomes and assist professional judgments, is poised to 
significantly transform medicine, as evidenced by the notable rise 
in research studies, particularly in critical care medicine [1]. This 
expansion is reflected in the growing number of clinical studies 
on AI-related themes [2]. Additionally, generative AI is becoming 
more popular in healthcare settings, especially with large language 
models (LLMs) like ChatGPT, which help with communication and 
documentation duties and support decision-making. Healthcare 
professionals’ initial opinions of ChatGPT in pediatric critical care 
emphasize both its advantages and disadvantages [3]. 

Despite the challenges in research caused by ethical and 
practical issues, AI may assist doctors with diagnosis, prognostics, 
and treatment in pediatric intensive critical care to enhance 
patient outcomes [4]. However, a lot more work needs to be done  

 
before the results of AI research are used at the patient’s bedside 
and become a true clinical benefit. The influence of AI models 
in the actual world is currently limited because less than 2% 
of them make it past the prototype stage [5]. Since most of the 
patients in this research are adults and bias are a significant issue 
for AI models, it is unclear how these results relate to pediatric 
populations. Each group has distinct clinical needs, assessments, 
and treatment approaches due to the notable variations in 
disease incidence, presentation, outcomes, and prognosis among 
youngsters [6]. Therefore, creating AI models especially suited to 
pediatric care is imperative to closing this gap.

Clinical Influence and Readiness of AI 

Even though some experts believe AI will revolutionize 
healthcare in the future, most new AI technologies have not 
yet been adopted by the larger medical community. Not every 
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technological development produces tools fit for daily use [7]. 
Although artificial intelligence (AI) has advanced significantly in 
adult medicine, especially in critical care and inpatient settings, 
its application in pediatric care is still in its infancy [8]. Prior to 
being incorporated into standard clinical practice, AI applications 
in healthcare must pass stringent testing, just like other medical 
devices and treatments [9,10]. 

Concerns regarding the safety and efficacy of these tools 
and techniques in particularly vulnerable populations, such 
premature babies, could cause the use of AI in pediatric critical 
care to lag other medical disciplines. There isn’t much research 
on the use of AI in low- to middle-income countries, where a lot of 
newborns and young children require emergency treatment [11-
13]. The effect of AI on these clinical settings and its consequences 
for patient care and healthcare procedures are crucial topics for 
further study.

ML Applications in Neonatal Mortality

One of the main causes of child death is neonatal mortality. 
According to the World Health Organization, 47 percent of all 
deaths in children under five are neonatal deaths [14]. Therefore, 
reducing global infant mortality by 2030 is a top objective [15]. 
The causes of infant mortality and its prediction were examined 
by machine learning (ML) [16,17]. 1.26 million babies delivered 
between 22- and 40-weeks’ gestation were included in a recent 
review [18]. As early as five minutes of life and as late as seven 
days, predictions were made. Neural networks, random forests, 
and logistic regression accounted for an average of four models per 
study (58.3%) [18]. Five research (45.5%) published calibration 
plots, while two studies (18.2%) finished external validation [18]. 
According to research, heart rate variability can predict early 
sepsis with an accuracy of 64–94% [19]. Clinical biomarkers 
balanced the ML decision by incorporating all clinical and lab 
characteristics, and they reached an AUC of 73–83%, according to 
another secondary analysis of multicenter data [20].

ML Applications in Predictions of Prematurity Com-
plications (BPD, PDA, And ROP)

PDA, or patent ductus arteriosus, is another significant cause 
of death and morbidity in the NICU. ML techniques were used 
to detect PDA using EHR and auscultation records, resulting in a 
76% prediction of PDA from 47 perinatal parameters assessed 
using 5 distinct ML techniques in 10390 extremely low birth 
weight infants. When XG Boost was used to evaluate auscultation 
records 123 and 250, the accuracy was 74% (Gomez-Quintana S, 
et al. 2021). There are ML studies aimed at predicting BPD from 
birth, gastric aspirate content, and genetic data, and it has been 
shown that BPD can be predicted with an accuracy of up to 86% 
in the best-case scenario, analysis of responsible genes with ML 
can predict BPD development with an AUC of 90%127, and the 
combination of gastric aspirate after birth and clinical information 
analysis with SVM can predict BPD development with a sensitivity 
of 88% [21].

Neonatology with Deep Learning

The primary applications of DL in clinical image analysis 
are divided into three categories: classification, detection, and 
segmentation. Classification identifies a specific feature in an 
image, detection locates numerous features inside an image, and 
segmentation divides an image into multiple pieces [22,23].

Prematurity Complications with DL in Neonatology

Digital imaging and AI-powered analysis are promising and 
cost-effective approaches for identifying infants with severe ROP 
who may require treatment. DL has been used to analyze neonatal 
EEGs and determine sleep stages. Interruptions in sleep have been 
linked to issues with neural development [24]. DL was used to 
demonstrate automated sleep state recognition using EEG records 
and ECG monitoring parameter data. The underperformance of the 
all-state classification (kappa score 0.33 to 0.44) was most likely 
due to difficulty in identifying modest changes between states and 
a lack of sufficient training data for minority classes.186. 

DL has been shown to be helpful in real-time evaluation of 
cardiac MRI for congenital heart disease [25]. Neonatal illnesses 
have been classified using deep learning algorithms based on 
thermal imaging. This research evaluated neonatal thermograms 
to determine infant health status and achieved high AUC values. 
However, these trials lacked clinical information. Two large-scale 
studies revealed ground-breaking findings about the impact of 
dietary practices and wireless sensors in NICU. A nutritional study 
found that nutritional behaviors were linked to discharge weight 
and BPD. This demonstrates how impartial ML approaches can be 
utilized to effectively implement clinical practice modifications. 
Novel wireless sensors can improve monitoring, reduce iatrogenic 
injuries, and promote family-centered treatment [26].

Informatics and AI in NICU Resuscitation

Clinical Deterioration Prediction

AI-powered systems can detect these changes, notify physicians 
immediately, and enable more effective and fast assessment and 
action. The HeRO® monitoring system was the first AI risk-scoring 
system designed for the NICU that predicted clinical deterioration 
(e.g., late-onset sepsis and necrotizing enterocolitis) using 
heart rate variability trends [27]. Several AI-enabled software 
platforms process real-time, continuous physiological data from 
cardiorespiratory devices. These platforms use machine learning 
approaches to provide clinical decision support (CDS). Novel 
models based on these data, such as the Hyperlactatemia Index, 
accurately predicted elevated lactate levels and the probability of 
poor cardiac output in pediatric critical care patients [28].

Resuscitation Education and Simulation

Virtual Reality (VR), Augmented Reality (AR) And 
Gamification

Neonatal resuscitation education improves technical skills and 
teamwork among healthcare workers. Originally used with real-
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world elements such as manikins, it has progressed with computer 
technology to encompass virtual and hybrid settings. Figure 1 
depicts the reality-virtual continuum in neonatal resuscitation 
scenarios, demonstrating a trend toward immersive technology in 
resuscitation training [29]. Neonatal resuscitation manikins, such 
as NeoNatalie™, provide tailored learning experiences using AI 
analysis [30]. They offer real-time input on bag-mask ventilation. 
With autonomous operation, learners can practice individually 

while receiving feedback on specific areas for growth. Further VR 
advancements with lifelike scenarios will increase engagement, 
knowledge retention, and skill development. Remote coaching 
via simulated neonatal resuscitation greatly improves care [31]. 
Telesimulation extends high-quality resuscitation training to even 
remote places in low-resource settings, and it tracks learners’ 
progress over time.

Figure 1: Milgram and Kishino’s reality-virtuality continuum with neonatal resuscitation examples.

AI in Resuscitation Education

Individualized, “on demand” education can be improved by 
combining AR, VR, and generative AI. More realistic simulations 
will be used to teach teams in crew resource management and 
communication [32]. Resuscitation training is one of the earliest 
instances of VR and AI being used in staff training for sepsis 
care using AI medical team members [33]. Combining AR and 
generative AI to place cues in a trainee’s field of vision during 
exercises could improve verbal and nonverbal communication 
abilities. By aiding clinical decision-making, enabling simulation-
based training, and offering multilingual instructional materials, 
artificial intelligence (AI) has the potential to enhance newborn 
resuscitation and teaching. To improve clinical skills and provide 
individualized learning experiences, LLMs can be incorporated 
into training programs [34].

AI-Guided Precision Parenteral Nutrition for Neonatal 
Intensive Care Units

Making treatment decisions based on computational 
techniques that utilize data repositories, such continuous monitor 
recordings and electronic health records (EHRs), is another new 
frontier in NICU innovation brought about by the rise of big data 
and artificial intelligence. Numerous predictive models are already 
showing progress, such as those for identifying intraventricular 

hemorrhage (IVH) or neonatal infection [35,36]. Even with 
these developments, AI’s full potential is still mostly unrealized. 
Clinical AI use is still only 10% in many US hospitals [37], with 
radiology and cardiology accounting for nearly 90% of adoption 
and neonatology for 0% [38]. 

Many prediction models do not affect outcomes in actual 
clinical settings, even when they are highly accurate [39]. As 
evidenced by new developments like large action models in 
autonomous systems, which prioritize actionable outcomes for 
increased clinical impact, this highlights the need for clinically 
relevant AI that goes beyond prediction-making to guide successful 
[40,41]. The necessity for targeted interventions is highlighted 
by the fact that one in ten newborns are admitted to neonatal 
intensive care units. Nevertheless, nothing is known about how 
artificial intelligence (AI) might be used to direct newborn care. 
For premature infants, total parenteral nutrition (TPN) is a life-
saving treatment; nevertheless, the therapy’s present application 
is resource-intensive, subjective, and prone to errors. 

TPN2.0, a data-driven method that optimizes and standardizes 
TPN utilizing data typically gathered from electronic health 
records, was created by Phongpreecha et al. [42]. To train TPN2.0, 
they gathered ten years’ worth of TPN compositions (79,790 
orders; 5,913 patients) at Stanford. They verified their model in 
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an external cohort (63,273 orders; 3,417 patients) from a second 
institution in addition to their internal validation. Their system 
found 15 TPN formulas that can increase safety and possibly save 
costs by enabling a precision-medicine approach (Pearson’s R = 
0.94 compared to experts). Physicians evaluated TPN2.0 higher 
than current best practice, according to blind research (n = 
192). Standard prescriptions were linked to higher morbidities 

(for instance, odds ratio = 3.33; P value = 0.0007 for necrotizing 
enterocolitis) in patients where there was a large degree of 
disagreement between the actual prescriptions and TPN2.0, but 
TPN2.0 recommendations were linked to lower risk. Lastly, we 
showed how TPN2.0’s transformer architecture allowed physician-
in-the-loop, guideline-adhering suggestions that facilitate AI and 
care team cooperation (Figure 2).

Figure 2: In a blind study, TPN2.0 outperformed the current best practice. a, in a blinded study, physicians who regularly prescribe TPN 
were recruited to rank three TPN solutions: TPN2.0, TPN composition from a different patient (randomly selected) and the actual prescription 
developed for that patient according to current best practice. Each team member ranked each of the three solutions from 0 to 100 after 
a thorough chart based on all information available in their EHR. The higher rating indicates a more appropriate composition. b, from a 
total of n = 192 comparisons from ten healthcare team members, TPN2.0 received the highest experts’ rating scores. The scores are also 
significantly higher (Mann–Whitney U test, two-sided P value.

Challenges and Future Directions in AI for Pediatric 
Intensive Care 

AI systems need to be able to analyze and decode gigabytes of 
clinical data to function as effective decision support systems and 
help intensivists in real time [43]. It’s interesting to note that while 
critical care is the focus of the analysis, several of these problems 
may also exist in pediatric inpatient settings. A significant 
barrier to the use of AI technology is the fact that the data from 
hospitalized patients that is needed for interpretation and training 
is typically complex, varies throughout institutions, and is largely 
unstructured. Even while digital data is now more easily accessible 
for analysis, it is not regularly gathered, accurately measured, and 
recorded [44]. For unstructured text data, such clinical notes in 
most inpatient settings, natural language processing (NLP) is 
necessary [45]. 

Unfortunately, annotating large text passages to train any 
model is expensive and time-consuming. NLP was only employed 
in one article in our review, suggesting that AI developers 
working in neonatal and pediatric intensive care settings are still 
learning about this technology [46]. The results of our review are 
less replicable since the studies do not evaluate bias in the data 
itself or deal with strategies for handling skewed or unbalanced 
data. Structured data-trained algorithms can improve AI 

performance, provide high-quality data extraction, and facilitate 
the use of AI input. Future studies might investigate the concept of 
“representation learning.” In representational learning, AI models 
use a prediction model and automatically learn characteristics 
to create an abstract representation of each patient’s data for 
medical record extraction. 

AI integration in neonatal and pediatric critical care may 
be more challenging due to several human factors and system-
integration challenges in addition to technical limitations. Future 
studies should focus on the factors that influence clinician trust 
in AI and look at how AI impacts clinical workflow. The use of 
AI may cause providers to acquire cognitive biases over time. 
For instance, because of the AI system’s dependable and highly 
efficient performance, clinicians may begin to accept its data 
without question, or because of their past experiences, they 
may reject AI output data without fully evaluating how it might 
impact outcomes. Quantitatively speaking, AI trained on a certain 
patient subset may be biased and produce results that are only 
applicable to that patient group. To overcome these obstacles, 
future researchers will need to engage the help of human factors 
engineers, computer scientists, and medical professionals. 

Crucially, future research is the only way to determine AI’s 
utility because its accuracy is anticipated to decline as it encounters 
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real-world data that differs from algorithm training [11,47]. 
Finally, most of the research reduced pediatric problems to binary 
classification types, employing a number of characteristics to 
assign a person to one of two groups (sickness vs. no illness) [48-
50]. The potential that a patient may have multiple comorbidities, 
each with differing degrees of severity or interdependency, is 
disregarded by this approach. Since the methodology of this 
research rarely addresses the barriers to adopting AI, we did not 
summarize or analyze these factors in our study. This is another 
important topic that requires further research [51-54].

Summary and Conclusions 

Resuscitation care in neonatal intensive care units is constantly 
changing and depends more on data. Artificial intelligence 
and informatics tools can be used to support data-driven 
precision resuscitation care. Because of poor data collection, 
aggregation, and limited adoption of artificial intelligence and 
analytical tools, these data are frequently underutilized despite 
technological breakthroughs. To support neonatal intensive 
care unit resuscitation care, training, and teaching, this review 
outlines the principles and investigates the evidence supporting 
informatics and artificial intelligence solutions. The necessity of 
an efficient interface design for precise data collection, storage, 
and conversion to wisdom using analytics and AI tools is one of the 
main conclusions. When using these tools, this review discusses 
data privacy, bias, responsibility, and ethical frameworks. 

Even though these new technologies have a lot of potential 
to enhance resuscitation, more research on their use in neonatal 
populations is necessary, as is clinical comprehension of 
informatics and artificial intelligence concepts. It will take some 
time before AI is broadly incorporated into standard pediatric 
healthcare procedures, even though there is a growing body of 
evidence supporting its use to improve pediatric health outcomes. 
For instance, there are difficulties when applying supervised 
AI algorithms to inpatient data since AI generally has trouble 
processing unsupervised data for clinical data extraction, and 
input training on trained models prevents effective use of AI 
in real-world scenarios (like complex critical illnesses with 
comorbidities). To fully exploit the potential benefits of AI in 
pediatric healthcare facilities, more study is required.
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