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Abstract

The thermal conductivity of CaSrFe2O6-δ, an oxygen-deficient perovskite, is a critical parameter for understanding its thermal transport 
properties and potential applications in energy conversion and electronic devices. In this study, we present an investigation of the thermal 
conductivity of CaSrFe2O6-δ at room temperature for its thermal insulation property study. Experimental measurement was conducted using a 
state-of-the-art thermal characterization technique, Thermtest thermal conductivity meter. The thermal conductivity of CaSrFe2O6-δ was found to 
be 0.574W/m/K, exhibiting a notable thermal insulation property
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Introduction
Perovskite oxides have garnered considerable attention in 

recent years due to their versatile properties, which make them 
promising candidates for a variety of technological applications, 
including thermoelectric devices [1], catalysis [2], and energy 
storage systems [3]. Among these oxides, CaSrFe2O6-δ stands out 
as an oxygen-deficient perovskite with a brownmillerite structure 
and intriguing electronic and structural features that render 
it an interesting subject for investigation [4]. One of the critical 
parameters influencing the performance of perovskite materials 
in practical applications is their thermal conductivity, a key factor 
in heat management and energy conversion efficiency.

Understanding the thermal conductivity of CaSrFe2O6-δ is 
essential for optimizing its performance in various applications, 
yet a comprehensive exploration of this property, particularly in 
relation to oxygen stoichiometry, remains relatively unexplored 
in the literature. This study aims to bridge this gap by providing 
information of the thermal conductivity of CaSrFe2O6-δ. By 
employing advanced experimental techniques, we seek to unravel 
the intricate interplay between crystal structure, oxygen vacancy, 
and thermal transport mechanism in this intriguing perovskite 
oxide.

The significance of this research extends beyond the specific 
material under investigation, contributing to the broader 
understanding of thermal transport in complex oxides. The 
insights gained from this study not only enhance our fundamental  

 
knowledge of CaSrFe2O6-δ but also offer valuable guidance for the 
design and development of novel materials with tailored thermal 
properties for applications in emerging energy technologies. 
Through this investigation, we aim to pave the way for the 
utilization of CaSrFe2O6-δ in advanced materials for efficient heat 
management and energy conversion processes.

Experiment

CaCO3, SrCO3, and Fe2O3 powders were meticulously selected 
for the synthesis of CaSrFe2O6-δ. The individual powders were 
precisely weighed and homogenously mixed in stoichiometric 
proportions using an agate mortar and pestle. Subsequently, 
pellets were meticulously prepared from the powder blend under 
a pressure of 3 tons, followed by calcination at 1000 °C for 24 
hours. The resulting pellets were then cooled to room temperature, 
reground, and repalletized. Sintering of the pellets took place at 
1200 °C for 24 hours, with a constant heating rate of 100 °C/h 
throughout the calcination and sintering processes. To assess the 
crystal structure and phase purity of the synthesized material, 
powder X-ray diffraction (PXRD) with Cu Kα1 and Kα2 radiations 
was employed. Rietveld refinements of the XRD data were 
conducted using GSAS software [5] and the EXPEGUI interface6. 
Microstructural studies were performed by scanning micrographs 
of the materials. The thermal conductivities of the materials were 
investigated using a Thermtest thermal conductivity meter, MP-2 
with TPS-4. This method is based on the principle of the Transient 
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Plane Source Method, where a circular disc of diameter 13 
mm/25mm and thickness of 3 mm was placed on the flat sensor of 
the Thermtest device, and the thermal conductivity was measured 
at room temperature.

Results and Discussion
The material’s crystal structure, identified as the 

brownmillerite type, has been previously reported [4]. In a 
recent X-ray diffraction experiment, the obtained results align 

with the earlier findings (Figure 1). Specifically, the compound 
exhibits an orthorhombic structure with the Ibm2 space group, 
depicted in (Figure 2) [4]. The structure consists of alternating 
layers of octahedra and tetrahedra. Within the same layer, the 
FeO6 octahedra share corners with other octahedra and with the 
tetrahedra in the layers above and below. Notably, the tetrahedral 
layer is comprised of chains of FeO4 tetrahedra running parallel to 
the octahedral layers [4].

Figure 1:  Rietveld refinement profile for powder X-ray diffraction data of CaSrFe2O6-δ, space group Ibm2. Black stars, green lines, 
vertical pink tick marks, and lower purple lines represent the experimental data, structural model, Bragg peak positions, and difference plot, 
respectively.

Figure 2:  Crystal structure of CaSrFe2O6-δ. (a) The octahedral FeO6 (cyan) and tetrahedral FeO4 (pink) layers. Grey spheres represent 
Ca/ Sr. (b) View from the top to highlight the chain formation in the tetrahedral layer. The Sr atoms are omitted for clarity. (c) Coordination 
geometry of Ca/Sr atoms. Note that Sr is 8-coordinated.
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A distinctive feature of this material is the coordination 
number 8 observed for the A-site cations, illustrated in Figure 
2c. This arrangement is characteristic of the brownmillerite-type 
structure. Table 1 shows the Rietveld refinement parameters for 
the Ibm2 space group of CaSrFe2O6-δ. Figure 3 shows the SEM 

image for the micrograph of the crystallites of CaSrFe2O6-δ. It is 
revealed from the SEM image that the crystallites grow in uniform 
geometry and sizes. It is nonporous and grain boundaries are 
formed between the crystallites.

Table 1: Rietveld refinement parameters of CaSrFe2O6-δ. 

element x y z Uiso multiplicity occupancy

Ca 0.5126(7) 0.1109(4) 0.0085(6) 0.029(8) 8 0.5

Sr 0.5126(7) 0.1109(4) 0.0085(6) 0.029(8) 8 0.5

Fe1 0.0760(2) 0.25 -0.0039(4) 0.027(4) 4 1

Fe2 0.25 0 0 0.038(6) 8 1

O1 0.2260(9) 0.0067(3) 0.2931(0) 0.028(7) 8 1

O2 -0.0815(6) 0.1490(7) 0.0016(2) 0.028(7) 8 1

O3 0.3834(3) 0.25 0.8913(3) 0.028(7) 4 1

Space group = Ibm2, a = 5.6315(4) Å, b = 15.1809(9) Å, c = 5.4696(8) Å, wRp =0.0262, Rp = 0.0187

Figure 3:  SEM image of CaSrFe2O6-δ.

Thermal conductivity

The material shows a thermal conductivity of 0.574 W/m/K. 
This low thermal conductivity or high thermal insulation property 
of the material can be discussed based on the different factors. 
The thermal conductivity of materials is often influenced by 
the movement of electrons, with Fe3+ and Fe4+ spins potentially 
playing a role in this process [7]. However, thermal conductivity 
is a complex phenomenon, and various factors contribute to its 
control. In the context of electron-doped materials like CaMnO3 or 
Ca0.9R0.1MnO3, the influence of phonon scattering becomes more 
pronounced, overshadowing the contributions of electrons and 
spins [7].

Similarly, studies on a SrTiO3-related oxygen-deficient 
compound have revealed that phonon scattering has a dominant 
effect over electronic contributions [8]. The total thermal 
conductivity (K) is the sum of contributions as shown by equation 
1 from phonons (Kp) and photons (radiation) KR. Kp includes 
thermal conductivity contributions from grain boundaries, lattice, 
and point defects [9].

K = Kp + KR   (1)

As phonon scattering increases, thermal conductivity tends to 
decrease [10]. Heat flow occurs through a range of phonons with 
different wavelengths and mean-free paths, and interference on 
thermal phonons hinders heat propagation [11,12]. Local lattice 
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distortions, structures with void spaces, and random vacancies 
act as sites for phonon scattering, leading to reduced thermal 
conductivity.

In the case of our materials, the low thermal conductivity 
is attributed to the suppression of lattice thermal conductivity 
and increased phonon scattering, primarily due to the presence 
of oxygen vacancies [13]. This effect is consistent with previous 
findings that show how introducing oxygen vacancies can 
suppress thermal conductivity [13].

In summary, oxygen vacancies play a crucial role in enhancing 
phonon scattering and reducing thermal conductivity in our 
materials. The significance of phonon scattering, as discussed 
above in relation to factors such as grain size, boundaries, and 
spins, underscores that the presence of oxygen vacancies is a 
key contributor to the observed low thermal conductivity in our 
compound.

Conclusion
Thermal conductivity of oxygen-deficient perovskite, 

CaSrFe2O6-δ is being investigated for its thermal insulation property. 
It has brownmillerite-type oxygen vacancy arrangements. 
CaSrFe2O6-δ shows a thermal conductivity of ~ 0.6 Wm-1K-1 which 
is one of the lower thermal conductivity of reported perovskite 
oxides. The main contributing factors for lowering the thermal 
conductivity of these compounds is phonon scattering due to 
oxygen vacancies and their ordered arrangements.
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