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Introduction

Bacteria capable of transporting electrons from the 
extracellular environment or through cell membranes are termed 
electricity-carrying bacteria [1]. Bacteria use both intra as well 
as extracellular systems linked with the acceptance or donation 
of electrons [2]. The electrons from organic or inorganic sources, 
are taken up by NAD brought to the cell wall, and donated to an 
electron acceptor [3]. Due to the accumulation of protons across 
the membranes, a proton gradient is generated known as the 
proton motive force leading to transport across the membrane, 
ATP production, and flagella movement [4]. Soluble protons 
are involved in this process which is pumped in and out of the 
membrane of bacterial cells leading to proton motive force  
 

 
(PMF). This is the reason bacteria are interacting for electricity 
production now [4].

Both yeast and bacteria were used to produce an electric 
current in an experiment by Potter in 1911 (Potter, 1911). 
Bioelectricity production from bacterial cells was first presented 
by him [5]. A great variety of bacteria is available in nature that 
is electrically active. Geobacter sulfurreducens and Shewanella 
oneidensis for microbial fuel cells (MFCs) first studied [6]. Both 
these strains of bacteria are studied in detail for being electrically 
active [7]. Pseudomonas and Clostridium bacteria are reported 
as exoelectrogens [8]. Rhodoferax ferrireducens are reported as 
having the potential to transfer electrons to an anode involving 
nano wires or c type cytochromes [9].
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Electricity Production by using bacterial cells as a catalyst 
is done by the decomposition of biomass such as grass pieces, 
vegetables, food, fruit wastes, plant leaves, and mud [10]. 
Bioelectricity is produced by using microbial fuel cells and soil 
having industrial effluents i.e., brewery wastewater, colored 
wastewater, sludge, and ocean sediments [11-13]. Biofilm of 
mixed as well as pure bacterial cultures is used for electricity 
production via MFC [9].

Bacteria from human sources also can produce electricity, 
the largest organ of the human body “skin” is covered by many 
microbes that can transfer electrons efficiently to produce 
an electric current [14]. Enterococcus faecalis and Listeria 
monocytogenes both gram-positive bacteria can produce electric 
current as well as the mechanism for the transfer of electrons 
namely the EET pathway [15]. Both bacteria found in the gut 
of bacteria are now under study due to their ability for electric 
current production and their role in human health [16].

Electricity sources used by humans for many centuries are 
fossil fuels. As we know fossil fuels are renewable sources, but 
they require a lot of time for its formation and now worldwide 
these sources are depleting very fast due to the needs of the 
increasing population. Moreover, the production of electricity 
from these sources adds toxic gases and pollutants to the air 
to which scientists are looking for pollution-free sources [17]. 
Other renewable energy sources such as wind, geothermal, 
tidal, biomass, and solar are of great interest [18]. Still, now 
other sources of electricity production have not competed with 
conventional electricity production from fossil fuels but the hybrid 
system of solar energy with hydrogen fuel and solar energy with 
the wind will improve efficiency as well as electricity production 
[19]. These conversions of solar energy into bioelectricity and 
hydrogen are under study [17]. In this review, we will discuss 
history, electrochemically active bacteria, and mechanism of 

electron transfer, and potential applications of electricity-carrying 
bacteria.

Electricity Carrying Bacteria

Both yeast and bacteria were used to produce an electric 
current in an experiment by Potter in 1911 (Potter, 1911). Many 
scientists have worked in the mid-20th century but at that time 
generation of current was not enough to be used for running any 
power machine. Two bacteria were reported at the same time in 
1988 as having the ability to accept electrons by growing on solid 
metal oxides (manganese or iron) [20,21]. Shewanella facultative 
bacterium isolated from the Oneida Lake, N.Y was found capable of 
reducing manganese oxides and was tested in a laboratory where 
it reduces manganese by accepting its electrons [21]. Another 
delta proteobacteria namely Geobacter, oxygen-sensitive found in 
the Potomac River, N.Y was isolated and tested that it reduces iron 
oxides by accepting electrons [4].

Both bacteria are studied for three decades to explain the 
mechanism now known as extracellular electron transport 
(EET). This ability of these bacteria is different from all other 
microbial worlds [20]. All the energy-producing biosystems work 
on the same principle which is electron flow involving in the 
conservation of energy in soluble electron acceptor and donor 
in the biological membranes having minimum chances of losing 
an electron to the exterior of the cell [4]. In Shewanella species, 
there is a series of proteins having multiheme groups involving 
in the conduction of electrons [22,23]. This mechanism through 
these linked proteins involves the movement of electrons across 
the membrane and outer substrates (Figure 1). In different 
strains of Shewanella extracellular electrons, transport occurs by 
the different mechanism which includes compounds involved in 
endogenous electron shuttling, reduction by exogenous, direct 
reduction and reduction with the help of nanowires along the 
membranes in the form of cytochromes [24,25] (Figure 1).

Figure 1: Linked proteins and movement of electrons across the membrane and outer substrates.
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Geobacter species case it is found that there is physically 
utilization of c-type cytochromes with multiheme groups, but pili 
are involved in the process of conduction of electrons without 
any c-type cytochromes [26]. These bacteria have no c-type 
cytochromes but still, there is extracellular electron transport in 
them which means that there is another extracellular electron 
transport (EET) mechanism that needs to be discovered [27]. Both 
bacteria elaborated above are the first bacteria named “electric 
bacteria”. Before the experimental study of Dr. Byung‐Hong Kim 
[28] about EET, none of the electrically active bacteria was given 
attention. In his experiment S. oneidensis MR‐1 was studied which 
showed the production of electric current without any electron 
shuttle system. Many scientists in different laboratories of the 
world worked on this experiment and lead to the production of 
current [29,30]. Another experiment has reported that microbes 
can accept electrons from electrodes for their maintenance and 
growth. This process also involves the isolation of microbes from 
different environments with the help of electrodes and c-type 
multiheme cytochromes [31].

Electrochemically Active Bacteria

The natural environment is enriched by electrically active 
microbes. Sources of microbes include brewery wastewater, 
sludge, ocean sediments, dairy manure, and natural ecosystems. 
Microbial fuel cells can grow under anaerobic conditions, digestive 
sludge, rumen liquids, granular sludge, and domestic wastewater 
[13].

α-Proteobacteria

Acidiphilium cryptum from Rhodospirillales acetobacteraceae 
class is a gram-negative bacterium isolated from the drainage of 
mine water. These bacteria under acidic conditions are the first 
electrically active bacteria for microbial fuel cells [32]. Another 
gram-negative bacterium namely Rhodobacter sphaeroides from 
class Rhodobacteraceae, Rhodobacter uses different acids as a 
substrate to produce electric current [33]. Rhodopseudomonas 
belongs to α-proteobacteria is first electrically active from this 
class [13]. Gluconobacter oxydans a gram-negative bacterium 
reported in 2002, uses carbon dioxide as a substrate to produce 
electricity and it belongs to group Acetobacteraceae and 
Gluconobacter [34].

β-Proteobacteria

R. ferrireducens facultative, gram-negative bacterium belongs 
to class Comamonadaceae. It uses Fe (III) as an electron acceptor 
and fully oxides glucose to carbon dioxide at a temperature 
ranging from 25-30 ºC. From this class, it is the first bacteria that 
was reported as having the ability to oxides glucose completely to 
carbon dioxide and use its energy for electricity generation [13]. 
Comamonas denitrificans belong to denitrifying bacteria having 

the potential to yield electricity [13,35].

γ-Proteobacteria

Shewanella a facultative, anaerobic gram-negative bacterium 
belongs to Shewanell aceae class. It has been reported as a reference 
in MFC (microbial fuel cell). Visualization of electron transfer can 
be seen among the bacteria and electrodes. S. putrefactions IR-1 
first electrically active bacterium reported as having the potential 
to accept electrons from electrodes [36]. Pseudomonas aeruginosa 
gram-negative, an aerobic facultative bacterium from class 
Pseudomonadaceae produces Pyocyanin as an electron acceptor 
not only for itself rather than for other strains during electricity 
production. It is the first bacterium that has an electron shuttle 
system [37]. Klebisella pneumonia is a gram-negative bacterium 
having the ability to oxidize different kinds of organic matter to 
produce electric current with the help of electrodes as an electron 
acceptor [38].

δ-Proteobacteria

G. sulfurreducens is an anaerobic gram-negative bacterium 
that uses Fe (III), Co (III)- EDTA, malic acid, and fumaric acid as 
an electron acceptor while hydrogen and acetic acid electron 
donors [39]. Sequencing of the whole genome of this bacterium 
revealed that it can be used as a reference bacterium to explain 
the mechanism by which they transfer electron from electrodes 
[13]. Geobacter uses iron as an electron acceptor and can reduce 
the radioactive pollutants from the environment such as benzene, 
short-chain fatty acids, ethanol, etc. That is why it is used as an 
eliminator of environmental pollutants [40]. Geopsychrobacter 
electrodiphilus a gram-negative bacterium has the potential to 
produce electric current by completely oxidizing citric acid, acetic 
acid, fumaric acid, and malic acid [41]. Desulfoblbus propionicus 
is also a gram-negative bacterium but with very low current 
production as compared to other bacteria [42].

ε-Proteobacteria

There is a production of 296mW/liter power by the two 
strains of genus Arcobacter that can grow in highly enriched 
acetate-fed MFC [43].

Mechanism of Electricity Production

Extracellular Electron Transfer

Mechanism of extracellular electron transfer (EET) can be 
explained by the following steps:

1)	 Directly transferring electron (DET) using nanowire or 
through direct contact.

2)	 Linked shuttle that may be endogenous or exogenous.

3)	 Extracellular polymeric substances (EPS) of biofilms 
[44] (Figure 2).
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Figure 2: Extracellular Electron Transfer (EET) Mechanisms.

G. sulfurreducens and S. oneidensis have ability to transfer 
electron across the biological membranes with the help of 
c-type heme-containing cytochromes regarding DET. This 
cytochrome has multiheme with different redox potentials due 
to microorganism transfer electron across membranes [45]. In 
the case of MES mode flow of electrons in a cell is against the 
concentration gradient from low to high potential while opposite 
in the case of MFC. Moreover, DET is under experimental study 
due to hydrogenases and Rusticyanin protein [46,47]. S. oneidensis 
and G. sulfurreducens have extracellular appendages namely pili 
sometimes called nanowires that connect two bacteria due to 
which they can accept and donate an electron to solid surfaces at 
greater distances [48].

DET depends on the existence of biofilm to produce electricity 
and connection in the extracellular environment for the successful 
transfer of an electron between in and out of the cell [49]. In a 
biofilm, all the cells work collectively to transfer electrons and its 
thickness is directly proportional to the current production [48]. 
Electroactive bacteria (EAB) and formation of biofilm have great 
importance in the biochemical production of current. Soluble 
inert shuttle molecules in the MET are involved in the transport 
of electrons in and out from acceptor to donor with higher 
tendencies of electron transfer even at higher distances [2].

Mediators also help in the transfer of electrons across 
membranes. These mediators may be natural or artificial. 
S. oneidensis and P. aeruginosa secrete flavins, phenazines 
respectively which are natural mediators [2]. IET is based on 
the production of chemicals such as fumaric acid and hydrogen 
which will serve as an electron acceptor and donor in microbes. 
Microbes produce metabolic substances which are also involved 
in the transfer of an electron between microorganisms and 

the electrode. Irrespective of the mediators in MET there is an 
irreversible redox process due to electron transfer shuttling 
compounds. Electrically active bacteria are extended by the IET. 
Genetic tools are a great source that helps to study the cellular 
metabolism for the maintenance of efficiently working strains [2]. 
Genetic tools allow us to do desired modification with the help of 
which electron transfer across membranes is controlled [2].

Role of Nanostructured Material in EET

MFC and MES technologies were developed as a result of the 
discovery of bacterial bidirectional EET. However, several intrinsic 
challenges, such as low biofilm conductivity and weak bonding 
of bacteria to an electrode, and a lack of knowledge of the two-
way EET mechanism, keep these technologies from becoming 
widely used. Biofilm ability is thought to be a key aspect of the 
EET process’s efficiency [50]. Unfortunately, biofilm conductivity 
alone is insufficient to efficiently transmit electrons to and from 
an electrode. To improve the bidirectional EET process, material 
scientists have recently begun to use recently manufactured 
nanostructured materials such as nanotubes of carbon, inorganic 
nanomaterials, semiconductors, conducting polymers, grapheme, 
and noble metal nanoparticles as bioanodes and biocathodes 
(Kalathil & Pant).

The use of nanostructured materials, in particular, has 
resulted in remarkable modifications in two ways EET process. 
Biofilm formation is a vital step in both MFCs and MES, a 
previous understanding of the basic mechanism required in 
bacterial adhesion to metal surfaces. The bacterial adhesion to 
diverse nanostructured surfaces has been studied in several 
ways, including theoretical and experimental studies. All of the 
advantages of employing such nanomaterials to improve electron 
transfer in BESs, as well as existing problems and future potential, 
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are highlighted (Kalathil & Pant). In the ambient environment, 
thin-film devices have been built from protein wires extracted from 
G. sulfurreducens bacterium. The current density is approximately 
17 microamperes per square centimeter. These devices provide 
approximately 0.5 volts on a 7-micron thick film [51].

Biofilm, Nanowire, Ion channel and Bio Surfactant 
Formation Leads to Increased Current

Biofilm Formation

A biofilm is a collection of bacteria encased in a complex, 
self-produced polymeric matrix that adheres to living or living 
surfaces [52]. Electroactive biofilms, on the other hand, are those 
that may respire final electrons released from metabolism on 
surfaces of the electrode. A single bacterial species can build a 
biofilm [53] or through multiple biofilms [54]. To generate power 
more efficiently in MFCs, electroactive biofilms are required. 
The amount of current production in MFCs is directly linked to 
biomass concentration in biofilm and the type of surface of the 
electrode. Electroactive biofilm prefers anode surfaces that are 
positively charged and hydrophilic [55]. The basic principle of 
microbial fuel cell creation also influences the performance of fuel 
cells [55].

Compare to bacteria that can form thin biofilms on the 
anode, bacteria that can create thick biofilms generate higher 
current densities e.g. G. sulfurreducens, develops a large biofilm 
with multiple layers (50 mm) is formed, and the gram-positive 
bacterium Thermincola ferriaceta also forms a thick biofilm (38 
mm). On the other hand, the potent Thermincola and Clostridium 
ljungdahlii form a thin monolayer biofilm, resulting in low current 
density [27]. However, very thick biofilm deposition also restricts 
electron flow. As a result, thickness is advantageous for generating 
high current densities. As previously stated, electro-active biofilm 
is characterized by its ability to transmit electrons to electrode 
surfaces or to minimize the concentration of soluble as well as 
insoluble electron acceptors. These proteins have active redox 
potential (e.g., c-type cytochromes) [56].

The growth and activity of electroactive biofilms can be 
influenced by certain ions or minerals. Aside from having similar 
effects on different microbes, the same ions affect different 
microorganisms differently. The increased amount of Ca2 ions in 
the bio electrochemical system’s anolyte, for example, has proven 
lethal to exoelectrogens (mixed culture from anaerobic sludge) 
[57]. The study found that increasing the Ca2 concentration to 
5 mM reduced the current output of the system by 72 percent 
when compared to the control system, which can be attributed 
to the buildup of non-active bacterial cells in the biofilms [57]. In 
contrast, adding CaCl2 (concentration of 1400 mM) to a mini MFC 
inoculated with S. oneidensis increases the density of current by 
about 80% in comparison to reference MFC which was primarily 
due to biological factors rather than ionic effects [58].

Furthermore, calcium ions encourage Shewanella xiamenensis 
for the production of EPS (extracellular polymeric substances). 

Furthermore, calcium ions encourage S. xiamenensis to produce 
EPS (extracellular polymeric substances). The structure of 
flagella and the cell membrane is influenced by the ions which 
stimulate the generation of EPS even more. At a 2 mM CaCl2 
concentration, the EPS yield rose from 0.56 g/L to 1.74 g/L at 
a 20 mM CaCl2 concentration. The study went on to look at the 
influence of calcium ions on the production of current in an MFC 
and discovered that calcium ions had a beneficial impact on MFC 
performance, producing approximately 20% more current than 
the reference MFC [59]. What is in the environment that could be 
a rich source of exoelectrogens? Typically, anaerobic sediment, 
primary industrial effluent, sludge from industrial wastewater 
treatment plants, and even the soil contain exoelectrogens that 
can be extracted as pure or impure culture from the particular 
sources and used them in MFCs [60].

Effect of Certain Ions and Minerals in Biofilm Formation and 
Activity

The activity of electrically active biofilms is affected by the 
minerals as well as ions. It is reported that the same ions may have 
different effects on different strains of microbes. Higher the level 
of calcium ions in the anodic electrolyte have proven dangerous 
for the electrical activity of exoelectrogens. It is reported in an 
experimental study that only a 5mM concentration of calcium 
ions leads to a reduction of 72% current production as compared 
to a controlled system [57]. The addition of 1400mM Calcium 
chloride solution to the biofilm of S. oneidensis also increases the 
current production by 80% in comparison to controlled MFC [58]. 
The addition of calcium chloride is also involved in the increased 
synthesis of extracellular polymeric substances in S. xiamenensis, 
done by affecting the structure of flagella and membranes of the 
bacterial cell. With the increase of calcium chloride solution’s 
concentration production of extracellular polymeric substances 
also increases. When studied the effect of calcium on MFC to 
produce current it is revealed that it increases its production by 
20% [59]. Sources for the utilization of MFC include industrial 
effluents, wastewater treatment, sludge, and soil [60].

Nanowires

Nanowires help in the transfer of electrons along long 
distances due to the thickness of biofilm [48]. When there is no 
oxygen or less amount of oxygen in the environment bacteria use 
it as an end point for electron acceptor [61]. Bacterial electron 
shuttle, unknown components, and proteins help in the transfer 
of electrons in making biofilm electrically active [52]. Due to the 
deficiency of pilA and omcZ in G. sulfurreducens bacteria, there is 
inhibition of biofilm formation as a result of which electric current 
also reduces [52]. PilA belongs to IV pili, has two segments; long 
PilA and short PilA [61]. It is reported that the long PilA segment is 
more important used to attach cells to graphite electrodes to form 
biofilms as compared to the short PilA [62]. However, short PilA 
is involved in the conductance of electrons across membranes via 
c-type cytochromes and OmcZ in the outer membrane [62].
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It is also revealed from another study that pili do not involved 
in the transfer of electrons in the cells transpiring near to electrode, 
but it helps in the aggregation of cells that ultimately leads to 
the formation of biofilm [63]. It also promotes the formation 
of a thicker layer of biofilm formation by involving a series of a 
network of cytochromes [63]. When G. sulfurreducens grow in 
the form of biofilm certain genes are reported as compared to 
single cells [64]. Genetic studies have revealed that there is the 
involvement of genes that are coding pilus. It also revealed the role 
of these certain genes in the production of extracellular polymeric 
substances for biofilm formation and cyclopropane fatty acids 
[64]. Modification in the structure of biofilm occurs due to the 
presence of a sugar matrix that alters the receptor site and helps 
in the attachment of c-cyts [65].

It is reported that the morphology and structure of biofilm is 
associated with the growth phases of microbes. G. sulfurreducens 
in lag phase has a single layer of cells with less amount of c-Cyts 
due to which there is low production of current but when there 
is biofilm formation with three to four-fold more c-Cyts leading 
to high production of electric current [66]. Level of c-Cyts in G. 
sulfurreducens increases with the lag phase proceeding to log 
phase due to the increased concentration of c-Cyts [66]. Thicker 
the biofilm greater the transport of electrons and vice versa 
[67]. The morphology of biofilm greatly varies with the change 
of electrode in MFCs. G. sulfurreducens form layers of cells with 
pillars when grown on carbon cloth [64].

The structure of biofilm varies from gram-negative bacterium 
to gram-positive bacterium, which is based on the working 
principle of MFC, which may work as an open or closed-circuit 
system. It is reported that when microbial fuel cells behave as the 
closed system there is more attraction between bacteria and anode 
and vice versa in the case of an open system. Similarly, microbial 

fuel cells on the surface of bacteria are more easily available than 
the lower ones [1]. Biofilm formation by S. oneidensis MR-1 on the 
surface coated with minerals is experimentally treated with cyclic 
dinucleotide messenger. A phosphodiesterase namely pdeB has 
shown a negative effect on the formation of biofilm [68]. Deletion 
of this factor enhanced the production of biofilm formation under 
controlled conditions. When studied wild and mutant types of 
strains it is revealed from the results that the former leads to the 
formation of biofilm up to 10mm thick while 2nd one leads to two 
folds increase [68]. 

S. oneidensis MR-1 is very sensitive to the electron acceptors 
and becomes motile protein kinase in case of response to electron 
acceptors [69]. Pilin genes in Shewanella spp., are involved in the 
synthesis of a protein called Mannose-sensitive hemagglutinin 
which enhances its attachment and biofilm production ability 
[58]. As we know that biofilm formation in this species is based 
on c-Cyts which also secretes flavin useful for the acceptance of 
electrons. These help in the transfer of an electron from the inner 
surface to the outer side of the cell [69].

Desulfovibrio desulfuricans play an important role in the 
formation of biofilm in MFC which is termed as nanowires 
which leads to easy transfer of an electron to the anode. These 
nanowires are very tightly bound to the electrode leading to 
thicker electrically active biofilm formation by this bacterium 
[70]. First, it was found that the block that the exchange of water 
molecules on the nanowire–to-air interface due to the thickness of 
the upper interface of the nanowire film is put, the energy, while 
the removal of these density restores a continuous amount of 
power, and in the second case, an increase in the rate of exchange 
of water molecules is due to an increase in the relative humidity, 
respectively, and increases the amount of electrical energy, which 
is also reversible [51] (Table 1) [71-79].

Table 1: Proteins, genes and mediators in bacteria working as exoelectrogens.

Proteins/Genes/Mediators Exoelectrogen References

Homologs of multiheme cytochromes Kuenenia stuttgartiensis Shaw et al., [71] 

Regulation of cell attachment to the electrode by PilA G. sulfurreducens Luo et al., [72] 

Chemotactic mobility to electron acceptors is facilitated by CheA-3 for S. oneidensis Kumar et al., [64] 

Regulation of fimbriae synthesis and assembly by pilR gene G. sulfurreducens Parameswaran et al., [53] 

Type IV pili D. desulfuricans Lebedev et al., [66] 

Msh (Mannose-sensitive hemagglutinin) structural proteins S. oneidensis Rollefson et al., [65] 

Pilin subunit PilA1 Synechocystis sp. PCC 6803 Sure et al., [73] 

Type IV pili A. ferrooxidans Jiang et al., [74]

OMCs system, soluble electron carriers Escherichia coli Zhang et al., [75] 

pilA gene encodes Type IV pili G. sulfurreducens Xiao & He, [76]

Endogenous redox mediators (pyocyanine and phenazine-1-carboxamide) P.aeruginosa Fernandes et al., [77] 

pilus retraction modeled by pilT-4 gene G. sulfurreducens Parameswaran et al., [53] 

c-Cyts:MtoA, MtoD and CymA MtoB Sideroxydans lithotrophicus Roden, [78] 

Pilus biogenesis regulated by pilC gene G. sulfurreducens Parameswaran et al., [53]
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OM c-Cyt Z encoded by OmcZ G. sulfurreducens Xiao & He, [76] 

c-Cyts Thermincola potens Marshall et al., [79] 

Ion Channel

The investigation of microbial ion channels had also yielded 
valuable information related to neuronal signaling structures 
[80]. Electrical signaling is widely used in biological processes 
to communicate. Ion channels directly alter the action potential 
in neurons, which is one of the most well-known examples. For 
several years, research on microbial ion channels has supplied 
valuable information into the morphological basis of such 
neuronal signaling [81]. The prokaryotic K ion channel KcsA, 
in particular, generated the information related to structure for 
elasticity and selectivity of ions [80].

Microbes have severally significant classes of ion channels: 
Na channels, Cl channels, Ca-gated, K channels, and ionotropic 
glutamate receptors just like neurons [82]. Moreover, the native 
function of such ion channels in microbes is still unknown. Despite 
previous efforts to reveal ion channel role in microbes, in acid 
resistance reaction and regulation of fluid have been recognized, 
ion-specific channels do not seem so to be entirely associated 
with these biochemical functions. This is the reason that leads to 
doubts about another specific role of ion channels in prokaryotes 
[80].

Bio Surfactant

Surfactants belong to a group of very reactive compounds, 
they may be synthetic as well as natural leading to affect the 
efficiency of the MFC by different factors. Rhamnolipids and 
sophorolipids are the only two biological surfactants that are 
included [83]. It is reported that these bio-surfactants affects 
the attachment of biofilm, composition, structure as well as the 
survival of electrode due to interruption of electron transfer [84]. 
Brevibacillus 1 and Brevibacillus 2 are both species are reported 
as biosurfactants that can produce an electric current. Production 
of electric current by these biosurfactant bacteria ranges between 
55 to 65 mW cm−2 [83].

Electron transfer and power output of MFC have been increased 
by improving the production of biosurfactants. Rhamnolipids 
synthesis in P. aeruginosa was increased by over expressing the 
gene rh1A and this leads to enhance the flow of electrons through 
the electron shuttle. It also enhanced the attachment of bacteria to 
the anode. This genetically modified strain gave us 2.5 times more 
production of electric current than that of the original strain [85]. 
Now after this scientists are working on exogenous surfactants 
which have proved more effective to produce electricity by MFC. 
Tween 80, EDTA, and polyethyleneimine are used as surfactants 
to improve the conduction of MFC and EET in bacteria [86,87]. 
As chemicals surfactants have side effects as well such as toxic 
to bacteria cells or leads to death of the bacterial cell [86,88]. 
That is why the addition of chemical surfactants to MFC needs 

to be improved to prevent bacterial death. As compared to these 
chemical surfactants the biosurfactants produced by bacteria are 
less toxic for MFC. Rhamnolipids and sophorolipid both are good 
biosurfactants that enhanced the performance of MFC and EET 
[88,89].

Electricity Production by Gut Bacteria

E. faecalis and L. monocytogenes both gram-positive bacteria 
can produce electric current as well as the mechanism for the 
transfer of electrons namely the EET pathway [15,90]. Both 
bacteria found in the gut of bacteria are now under study due to 
their ability for electric current production and their role in human 
health [16]. Series of experiments are conducted by scientists to 
explore the EET mechanism by other gram-positive bacteria [91].

Firmicutes and Bacteroidetes phyla both facultative anaerobes 
are a group of gram-positive and gram-negative bacteria found in 
the gut of a human. Due to their facultative nature, these bacteria 
grow in less oxygen but use high amount of nutrients leading to 
more and more EET processes [92,93]. Gut microbes are of great 
interest after the discovery of electron transfer pathways in them 
[94]. Five gut bacteria namely Lactobacillus rhamnosus, E. faecalis, 
Lactobacillus reuteri, Streptococcus agalactiae, and Staphylococcus 
aureus are reported as having the ability of EET pathway. E. 
faecalis, S. agalactiae, and S. aureus are reported as having the 
ability to transfer electrons and produce electric current as much 
as well-known S. oneidensis gram-negative bacteria. After this, 
experiments are conducted to evaluate the genes in S. aureus that 
are involved in electrogenicity [94].

Electricity Production by Skin Bacteria

The largest organ of the human body “skin” is covered by 
many microbes which can transfer electrons efficiently to produce 
electric current [14]. Staphylococcus capitis and Staphylococcus 
epidermidis found on the skin can produce electric current and 
that can be compared with the highly electrogenic gram-negative 
bacteria [95]. It is believed that bacteria produce electrons 
in the inner side of the membrane having an acceptor on the 
extracellular environment. Bacteria oxidize substances such as 
acetate to produce electrons which then transfer to other bacteria 
or metal ions i.e., manganese ion, ferric ion [96,97]. Above listed 
gram-positive gut bacteria when studied have revealed that they 
synthesize a special type of proteins that are involved in the 
process of EET leading to an increase in the bacterial growth rate 
[98,99].

Ferrozine assay is used to assess the electrogenic property 
of S. epidermidis skin bacteria. It is reported this bacterium 
is more electrogenic in the presence of glycerol fermentation 
and the addition of 5-methyl furfural leads to stop the process 
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of fermentation because of which electricity production also 
diminishes [100]. S. epidermidis and Staphylococcus hominis when 
exposed to only 2% glycerol for a period of 20 min, an increase of 
3 mV is noticed [100].

Electricity Production by Cable Bacteria

Newly discovered cable bacteria are reported as having the 
ability to produce electric current and can run it along their 
whole filamentous body [101]. They produce electric current by 
oxidizing sulfide in the deep layers of sediments and reducing 
oxygen at the surface of sediment-water [102,103]. Cable bacteria 
have been discovered at the anaerobic interface in a variety of 
aquatic sediment environments, including water bodies, as of 
their discovery [104,105], freshwater [106], and aquifer [107] 
ground water. Cable bacteria have a significant impact on the 
elemental cycling of sulfur, iron, methane, and phosphorus in such 
environments [108-111].

Furthermore, cable bacteria were discovered connected to 
the anode of an anoxic planktonic microbial fuel cell. [112] or 
in connection with oxygen-rich areas around plant roots and 
insect tubes in water bodies [111,113]. Cable microorganisms 
are members of the Desulfobulbaceae family, which also includes 
planktonic sulfate-reducing bacteria and sulfur- disproportioning 
bacteria [114]. The filament of the cable microbe is linear 
and usually consists of hundreds of cells. Though its cells are 
differentiated by an inflexible septum, they communicate a 
cytoplasmic space which includes a system of conductive fibers 
that operate along the longitudinal direction of the filament. 
[103,115,116] and are linked among both cells by a cartwheel-
shaped framework inside the septum [117,118]. The cell division 
process in cable microorganisms seems to be very similar to the 
Gram-negative reference microbe E. coli [114] (Figure 3).

Figure 3: Electron Transport Mechanism in Cable Bacteria.

Long-Distance Electron Transport in Cable Bacteria

Microscopy demonstrates that cable microbes polymerize 
to form fibers composed of elongated chains of cells extending 
up to 30-70 mm in length and containing more than 104 cells. 
These long microbial fibers are naturally slightly bent in the outer 
surface of water bodies, under which they form dense filament 
systems [101].

Microbial Fuel Cell 

The microbial fuel cell (MFC) is now the most popularly 
used bacterial EET method, in which bacteria produce electricity 
by using electrons extracted from the EET [119,120]. MFCs use 
microbes as an enzyme to metabolize biological molecules 
such as non-carbon materials like sulfur compounds and plant 
material including, fruit wastes, food wastes, grass pieces, plant 

leaves, edible wastes, and muds to generate electricity [121]. 
As an electron donor for energy production, numerous simple 
to different substrates has been used. With varying efficiencies, 
these include ribose and, galactose, acetate, whey, sucrose, xylose, 
molasses, cellulose, and glucose [122,123]. A few researchers 
demonstrated that hydrogen can be produced efficiently in 
MFC, and is used in the mechanism for electricity supply and 
wastewater treatment. Hydrogen can be used to reduce carbon 
emissions because it is compatible with both burning and 
electrochemical processes for electricity production. There are 
various methodologies for hydrogen production, including water 
electrolysis and bacterial production [121].

The electricity produced from waste materials, energy 
production in MFCs can be boosted in several ways. The types of 
electrodes, electrode dimensions, proton exchange membranes, 
and other factors all have an impact on electricity production. An 
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appropriate trial on ammonium-treated carbon electrodes was 
conducted to enhance output power. In this experiment, the anode 
treated with ammonium is dependent on two distinct factors 
that influence energy production, like power plant startup, high 
microbial bond strength, and improved of electron transfer ability 
to the exterior by microbes. Because of the ammonium treatment, 
electron transfer has been enhanced [124].

Electricity Production by Using MFC

Components of MFC are the anode, cathode, external wire, 
and membrane sensitive to protons. Anaerobic a well as aerobic 
conditions are set at the anode and cathode, respectively. The 
communicator can be used or not for the working of MFC. Bacteria 

are also added to aid in the process of oxidation for microbial 
fuel cells [125]. Suitable substances are given to the bacteria at 
the anode which anaerobically metabolizes them and releases 
an electron. These electrons are then transferred to the cathode 
through an external wire to generate electricity. Electrically active 
bacteria break down organic substances and covert chemical 
energy released from bonds into electrical energy. MFCs are 
of different designs that may be stacked MFC, single or two-
chambered MFC [126]. There is a special type of membrane called 
proton exchange membrane which separates two electrodes 
and helps in the movement of an electron across cathode for the 
production of electricity [127] (Figure 4).

Figure 4: Electricity production by using MFC.

Types of MFCs

Single Chamber MFC

Anode and cathode in MFC with a single chamber may or 
may not be separated by a membrane. A separating membrane is 
occasionally linked with a cathode [128]. Electrons produced by 
the oxidation of carbon compounds at an anode are transferred 
to the cathode via an external circuit [129]. The presence of 
cathode is more important in this type of MFC due to its role in 
oxidation at pH 7 [130]. There is low liquid volume in the case 
of air cathodes used in this type of MFC while the use of small-
sized air cathodes has few drawbacks for output power due to the 
nature of inoculum, electrode spacing, and nature of PEM [10].

Two-Chamber MFC

Mostly used microbial fuel cells are in the form of this type. 
In this type, there is the aerated cathode and anaerobic anode. A 
salt bridge or proton exchange membrane is used to connect these 
two electrodes. At the anode, formation of biofilm under anaerobic 
conditions is facilitated by microbes and it is aerobic in the cathode 
chamber [131]. Positive ions move from the cathode towards the 

anode leading to a decrease in pH at anode whole increase at the 
cathode which tends to decrease the electrical potential at the 
electrode [132]. The performance of MFC is controlled by many 
parameters like pH, flow rate, nature of electrodes, and external 
flow [133,134].

MFC and Electricity Carrying Bacteria

R. sphaeroides could grow in aerobic as well as the anaerobic 
environment. These bacteria when grown in the presence of 
light under anaerobic conditions they form photosynthetic 
apparatus in the cytoplasm of the cell to produce electric current 
[17]. Rhodobacter capsulate [135], Rubrivivax gelatinosus 
[136], Rhodopseudomonas faecalis [137], Rhodopseudomonas 
palustris are photosynthetic microbes commonly involved in the 
production of hydrogen [138,139]. R. sphaeroides is reported 
as having electrical activity greatest of all [17]. Klebsiella sp. 
is a facultative anaerobe that can generate electric current by 
consuming substrates food wastes, glucose, and sucrose [140-
142]. It also can degrade RB19 for the production of electric 
current. Klebsiella sp. C is involved in the synthesis of mediators 
that help in the production of electric current [143].
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P. aeruginosa is used as a catalyst in the double chamber MFC 
that uses substrates fructose, sucrose, and glucose to produce 
an electric current. It uses pentoses and hexoses via anodic 
respiration to produce power. Bacteria have high affinity in the 
case of glucose than sucrose and fructose (Ali et al.,). Mesophilic 
Aeromonads grow in water bodies and are facultative anaerobes. 

Aeromonas hydrophila bacteria are involved in the breakdown of 
chitin due to the presence of enzymes Endo-chitinase and b-N-
acetylglucosaminidase. These enzymes lead to more degradation 
of chitin because of which more power is generated [128] (Table 
2).

Table 2: Electrically active bacterial species, their anode, cathode, power generation.

Specie Anode material Cathode material Gram +/- Power References

P. aeruginosa Carbon Carbon  G- 21 mW/m2 Liu et al., [86] 

R. sphaeroides Platinum Graphite  G- 408.06 mW/m2 Cadirci, [17]

Klebsiella sp. C Graphite Graphite  G- 84 mW/m2 Holkar et al., [143]

Tolumonas osonensis Carbon Carbon  G- 424 mW/m2 Luo et al., [72] 

A. hydrophila Carbon Carbon  G- 6.65 mA/cm2 Li et al., [129] 

S. oneidensis Graphite Graphite  G- 0.3–0.6 W/m2 Dai et al., [144]

G. sulfurreducens Carbon cloth Carbon cloth  G- 084 mW/m2 Inoue et al., [145] 

Bacillus licheniformis Zinc copper  G+ 0.95V Barua et al., 2018

Bacillus thuringiensis Hydrate carbon hydrate carbon  G+ 20–35 mW/ m2 Treesubsuntorn et al., 2019

Comamonas denitrificans Carbon/ graphite Pt  G- 35 mW/ m2 Xing et al., [146] 

Anaerolineaceae  Graphite carbon  G- 105 mA/ m2 Lu et al., [147]

Corynebacterium sp.MFC03 Carbon carbon  G+ 41 mW/ m2 Liu et al., [148]

Citrobacter sp SX-1 Carbon Carbon/ Pt  G- 88 mW/ m2 Xu and Liu, [149]

C. denitrificans  Graphite graphite  G- 0.25 W/m3 Eaktasang et al., 2016

Enterobacter cloacae Carbon carbon  G- 42 mW/ m2 Nimje et al., [150]

Methylosinus trichosposium Rgo/Ni foam rGO/Ni foam  G- 205 mW/ m2 Jawaharraj et al., 2021

Methylococcus capsulatus Rgo/Ni foam rGO/Ni foam  G- 110 mW/ m2 Jawaharraj et al., 2021

Ochrobactrum anthropi YZ-1 Carbon carbon  G- 89 mW/ m2 Zhou et al., 2016

E. Coli Carbon Pt  G- 0.001 mA Liu et al., [86]

Kocuria rhizophila Carbon carbon  G+ 75 mW/ m2 Luo et al., [147]

Shewanella putrefaciens Graphite graphite  G- 3.5 µW Veerubhotla et al., 2015

S. oneidensis is reported as having electrical activity and is 
involved in the production of electric current [144-150]. Bacillus 
and Klebsiella both strains can produce electric current [151]. 
Organic carbon content in the soil is also one of the major factors 
which influence the production of electric current [11].

Conclusion

Shewanella oneidensis and Geobacter sulfurreducens 
demonstrate pioneering electricity-carrying bacteria, showing 
complex electron transfer mechanisms involving multiheme 
proteins and unique extracellular electron transport capabilities, 
respectively. The diverse range of bacteria, from gut microbes 
like E. faecalis and L. monocytogenes to skin bacteria like 
Staphylococcus capitis and Staphylococcus epidermidis, as well 
as newly discovered cable bacteria, highlight the potential of 
microbial electrogenesis across various environments [152-
160]. Electricity-carrying bacteria including Staphylococcus 

capitis, Staphylococcus epidermidis, and cable bacteria, exhibit 
diverse mechanisms for bioelectricity production, ranging from 
skin microbiota to deep sediment environments. Their potential 
in MFCs highlights a promising avenue for sustainable energy 
generation from various substrates, underscoring the importance 
of harnessing microbial electrogenic properties for future energy 
needs. Electro microbiology is generally an emerging field of 
biology and microbiology, with a wider range of new developments 
and ever-growing discoveries. There are many other potential 
applications currently under study [161-167]. However, we need 
new methods that can meet our sustainable system requirements. 
The field of electro microbiology can provide us with some useful 
and exciting tools for finding a sustainable future. The production 
of bioelectricity by conversion of organic waste into useful energy 
through well-organized wastewater treatment is an effective way, 
which can be used as an alternative energy source to substitute 
non-renewable energy.
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