Niazboo (Ocimum Basilicum) As Medicinal Plant Establishes Against Salinity and Sodicity

Muhammad Arshad Ullah¹*, Muhammad Rasheed² and Imdad Ali Mahmood³

¹Department of PMAS - Agronomy, University of Arid Agriculture, Pakistan
²Land Resources Research Institute, National Agricultural Research Centre, Islamabad, Pakistan
³Land Resources Research Institute, National Agricultural Research Centre, Pakistan

Introduction

Salinity stress negatively impacts agricultural yields throughout the world, affecting production, whether for subsistence or economic gain. At present, about 20% of the world’s cultivated land and approximately half of all irrigated land and 2.1% of the dry agriculture land is affected by salinity. Salt stress is one of the most serious limiting factors for crop growth and production in the arid regions. About 23% of the world’s cultivated lands is saline and 37% is sodic [1]. Considerable research work has been conducted on the effect of salinity on different growth characters of different crops worldwide [2-9].

Niazboo (Ocimum basilicum) commonly known as sweet basil is a popular herbaceous plant belongs to Lamiaeae family widely used for flavoring and medicinal purposes. It is an annual herb, 20-60 cm plant height with white and pink flowers and characterized by great morphological and chemical diversity. The useful parts of the plants are leaves and seeds, these highly aromatic leaves used either fresh or dried for spice. It comprises 65 species, adapted to grow in warm conditions and originally it is native to India and other countries of Asia [10].

Hot tea of basil plant leaves is good for treating nausea, dysentery and flatulence. Externally it can be used for different skin infections such as treatment of acne, snake bites and insect stings. In addition to these, basil has been used as a remedy for an enormous number of ailments, including cancer, convulsion, deafness, diarrhea, epilepsy, insanity, sore throat, toothaches, and whooping cough. Ocimum basilicum is being utilized as a source of essential oils mainly in industries, perfumery, dental, oral products and traditional ritual. As a part of the tradition and religious rituals, basil needs more attention for the furtherance of its cultivation on a commercial scale as compared to other medicinally important plants. The aim of this study is to promote the cultivation of basil plants as well as utilization of saline lands which are unproductive for a number of field crops and reduce the average output of major crops greater than 50% [11].

Ocimum basilicum L., commonly known as Sweet Basil, belongs to the genus Ocimum of the family Lamiaceae. Ocimum (from Greek ozo for smell) is appropriate for the genus since its various species are known for their peculiar strong odours. Basilicum is the Latin translation of the Greek basilikon meaning king and...
due perhaps the same reason the herb is called “Herbe Royale” in French. The Urdu/Punjabi name Niazbo is also reflective of its pleasant fragrance.

Various effects like immunomodulatory, hypergkaemic, hypolipidemic, anti-inflammatory, hepatoprotective, antimutagenic, antimicrobial, antifungal, antioxidant, lipid peroxidation, insect repellency, antiviral, antierhythmic, depigmenting, antitoxic and CNS activity analysis reports are mentioned. The wide range of study on this herbal plant shows that it is very beneficial for the improvement of current drugs and more work can be done to take advantage of the potential remedial qualities of it. It is reported that some plant seeds showed major reduce under salt stress i.e. Ocimum basilicum [12], Petroselium hortensis [13], sweet marjoram [14] and Thymus maroccanus [15]. The other stage is seedling growth which influenced by salinity negatively. It has been reported that, seedling growth of Thymus maroccanus [15], basil, chamomile and marjoram [14] were severely decreased depend on salt stress. Some researchers said that morphological characteristics of number of medicinal plants were effected under salt stress conditions such as number of leaves, leaf area and leaf biomass in reduced form as Majorana hortensis , peppermint, geranium, Thymus vulgaris, sage and Mentha pulegium [16-21].

In this study, sweet basil was used as an experimental material. This plant is commonly used by local people in treatments of various diseases. For example, it is used for treatment of dry mouth and dental complaints, diarrhea and chronic dysentery, respiratory disorders, and effective in the treatment of fungal diseases and stomach discomfort in addition, the influential antitussive, diuretic, anthelminthic, tranquilizer and expectorant roles in medicinal approach [22,23].

The use of medicinal plants on phytotherapy is a result of empirical knowledge accumulated over the centuries about plant actions in several ethnic groups. Therefore, there are many questions about the standardization techniques for the production and exchange of phototherapeutic agents [24].

The indiscriminate medicinal use of plants, usually toxic ones, may entail risks to health, because, similarly to the allopathic drugs, there is a threshold dosage for each phototherapeutic agent. Thus, after an inadequate use, several disorders may occur; from intoxications to mutation events in somatic and germinative tissue, and it can lead to the development of somatic diseases, teratogenic effects and inherited genetic damages [25-28]. Most carcinogens, for example, trigger their tumorigenic activity by the interaction of natural inducers of mutations with the DNA, leading to permanent genetic lesions, which are expressed as genetic mutations or chromosomal aberrations involving the cell cycle [29].

The presence of secondary metabolites in plants is characterized by their ability to provide defenses against biotic and abiotic stress [30]. The mechanism of defense varies from plant to plant, their environmental conditions and climatic variations. However, the presence of these metabolites in plant are usually in minimum amounts though several molecular techniques are available to either increase or decrease the quantity of a particular metabolite by blocking competitive pathways and enriching metabolites of choice [31]. Terpenes, alkaloids (N-containing compounds) and phenolics constitute the largest groups of secondary metabolites. The shikimic acid pathway is the basis of the biosynthesis of phenolics while the terpenes which are comprised of isoprene units arise from the mevalonate pathway [32].

Aspirin (1) from white willow, quinine (2) from the cinchona plant and artemisinin (3) from Artemisia annum are all plant secondary metabolites. The biological application of these metabolites as therapeutic agents for a broad spectrum of ailments and the microbial infections has been salutary in human history.

Aromatic and medicinal plants are still a major part of alternative and traditional medicine in the developing countries. Numerous herbal therapies are currently widely used in medicine [33,34]. The use of medicinal herbs as anti-inflammatory, antifungal, and analgesic drugs is common in Algeria. In most cases, the active molecules of the herbs are unknown. Studying the biological and pharmacological properties of medicinal plant extracts is a rational approach in our quest for new drugs [35-38].

Materials and Methods

A pot study was conducted to evaluate the salt tolerance of Niazboo (Ocimum basilicum) as medicinal plant under different saline and sodic concentrations at green house of Land Resources Research Institute, National Agricultural Research Centre, Islamabad, Pakistan during. 2017. The soil used for the pot experiment was analysed and having 7.4 pH, 1.7 ECe (dSm$^{-1}$), 4.9 SAR (mmol L$^{-1}$)$^{1/2}$, 21.7 Saturation Percentage (%), 0.40 O.M. (%), 7.0 Available P (mg Kg$^{-1}$) and 97.7 Extractable K (mg Kg$^{-1}$). Considering the pre- sowing soil analysis, the ECE (Electrical Conductivity) and SAR (Sodium Absorption Ratio) was artificially developed with salts of NaCl, Na$_2$SO$_4$, CaCl$_2$ and MgSO$_4$ using Quadratic Equation.10 Kg soil was used to fill each pot. 10 seeds of Niazboo (Ocimum basilicum) as medicinal plant were sown in each pot. Fertilizer was applied @50-45-40 NPK Kg ha$^{-1}$. Treatments were (4 dSm$^{-1}$ + 13.5 (mmol L$^{-1}$)$^{1/2}$, 5 dSm$^{-1}$ + 25 (mmol L$^{-1}$)$^{1/2}$, 5 dSm$^{-1}$ + 30 (mmol L$^{-1}$)$^{1/2}$, 10dSm$^{-1}$ + 25 (mmol L$^{-1}$)$^{1/2}$, 10dSm$^{-1}$ + 25 (mmol L$^{-1}$)$^{1/2}$ and 10 dSm$^{-1}$ + 30 (mmol L$^{-1}$)$^{1/2}$). Completely randomized deign was applied with three repeats. Data on biomass yield were collected. Collected data were statistically analysed and means were compared by LSD at 5 % [39].

Results and Discussion

Intense salinity decreases efficiency of many crops including most vegetables by causing various irregular morphological, physiological and biochemical alternations that basis late germination, high seedling transience, poor plant population, diminutive growth and lower yields. Biosaline agriculture
(utilization of these salt-affected lands without disturbing present condition) is an economical way to reclaim the salt-affected soils and bring this area under cultivation. Keeping in view, a pot study was carried out to assess the salt tolerance of Niazboo (Ocimum basilicum) under different salt concentrations. Significant divergence was initiated with treatments on biomass yield (Table-1). Highest biomass yield (43.10gpot⁻¹) was gained by 4 dSm⁻¹ + 13.5 (mmol L⁻¹)¹/2 treatment. Biomass yield was decreased as well as the toxicity of salts was increased. Minimum biomass yield (30.33 gpot⁻¹) was produced at 10 dSm⁻¹ + 30 (mmol L⁻¹)¹/2. Germination and seedling emergence may be influenced by temperature, sowing depth and seedbed conditions like available moisture and salinity [40,41]. Salinity leads to delayed germination and emergence, low seedling survival, irregular crop stand and lower yield due to abnormal morphological, physiological and biochemical changes [42,43].

Table 1: Effect of various salinity and sodicity levels on biomass yield of Niazboo (Ocimum basilicum) as medicinal crop.

<table>
<thead>
<tr>
<th>Treatments</th>
<th>Biomass yield (gpot⁻¹)</th>
<th>% Decrease over control</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECe= 4 dSm⁻¹ + SAR=13.5 (mmol L⁻¹/2)</td>
<td>43.10a</td>
<td>------</td>
</tr>
<tr>
<td>ECe= 5 dSm⁻¹ + SAR=25 (mmol L⁻¹/2)</td>
<td>38.00a</td>
<td>11.83</td>
</tr>
<tr>
<td>ECe= 5 dSm⁻¹ + SAR= 30 (mmol L⁻¹/2)</td>
<td>36.33ab</td>
<td>15.7</td>
</tr>
<tr>
<td>ECe= 10dSm⁻¹ + SAR=25 (mmol L⁻¹/2)</td>
<td>35.83b</td>
<td>16.86</td>
</tr>
<tr>
<td>ECe= 10dSm⁻¹ + SAR=30 (mmolL⁻¹/2)</td>
<td>30.33bc</td>
<td>29.62</td>
</tr>
<tr>
<td>LSD at 5%</td>
<td>5.23</td>
<td></td>
</tr>
</tbody>
</table>

Table 1 also explained the % decrease in biomass yield over control. 5 dSm⁻¹ + 25 (mmol L⁻¹)¹/2 treatment performed better results i.e. the least reduction % over control (11.83). Salinity- sodicity showed serious effect on the growth reduction from 11.83 to 29.62%. This huge fissure was impacted by the negative effect of salinity cum sodicity on Niazboo (Ocimum basilicum) growth. Salinity-sodicity showed staid effect on the growth reduction from 11.83 to 29.62%. This reduction fissure was impacted by the harmful effect of salinity and sodicity on cariander growth. Salinity- sodicity behaved toxic impact on the growth reduction from 11.83 to 29.62%. Such problems affect water and air movement, plant-available water holding capacity, root penetration, runoff, erosion and tillage and sowing operations. In addition, imbalances in plant-available nutrients in both saline and sodic soils affect plant growth [44-48].

Conclusion

Based on the findings, Niazboo (Ocimum basilicum) was able to grow against more salt tolerance at 4 dSm⁻¹ + 13.5 (mmol L⁻¹)¹/2 treatment. Therefore, Niazboo (Ocimum basilicum) is suggested to be cultivated in farmlands having salinity cum sodicity up to 4 dSm⁻¹ + 13.5 (mmol L⁻¹)¹/2.

References

