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Introduction
Infectious diseases are caused by bacteria, fungi, viruses, 

or parasites. These may be communicable, acquired from 
contaminated food or water, or may spread by insect bites, etc. A 
number of bacteria reside inside the human host harmlessly and 
some of them are even beneficial, but there are some bacteria 
that are responsible for causing disease under certain conditions. 
Few of the bacterial infections are deadliest like tuberculosis [1], 
acinetobacter infections, memingitis, salmonellosis, etc which 
claim lives of a number of people every year. Antibiotics are 
used as the medication for their treatment as they interfere in 
the processes that are crucial for bacterial survival. But in due 
course of time, bacteria become resistant to these antibiotics and 
it becomes difficult to control these infectious diseases [2]. So, by 
having the complete knowledge of the whole process of bacterial 
infections and various virulence factors that are responsible for 
their pathogenesis, it would be easier to combat the disease. 
These microbial pathogens invade the host defense mechanism 
by using a number of genetic strategies [3]. The bacteria use 
multiple virulence factors that enable the bacteria to replicate, 
colonize, and disseminate within the host. In the process of 
bacterial pathogenesis, the bacteria have to invade the host 
cell which can involve enzymes and toxins [4].  Phospholipases 
(PLs) are reported to be one of the enzymes involved in host cell 
invasion in a number of diseases [5].

Phospholipids and phospholipases 
Phospholipids are the key component of cellular membrane 

that provides the binding site for both cellular and extracellular 
proteins. They are derivatives of glycerol-3-phosphate that is 
esterified at its carbon (sn-1 or sn-2) positions to non-polar 
fatty acids and at its phosphoryl group to a polar head group 
composed of nitrogenous base, inositol unit or glycerol [6]. 
Metabolites such as arachidonic acid (ARA), diglycerol that 
are generated after the catalysis of phospholipids by PLs can 
function as lipid mediators or second messengers that are 
involved in the membrane trafficking, cell proliferation, signal 
transductiona and apoptotic cell injury [7]. PLs are a ubiquitous 
group of hydrolases which are involved in the family of lipolytic 
enzymes that catalyze the hydrolysis of phospholipids into fatty 
acids and other lipophilic substances. 

Phospholipases (PLs) are a heterogeneous group of enzymes 
which cleaves the ester bonds of phospholipids. They are 
mainly associated with the cell membranes and membrane- 
bond vesicles and are responsible for the destabilization of 
membranes and cell signaling [8,9]. The product release by the 
hydrolysis of phospholipids by PLs has been reported to play an 
important role in host cell penetration and cell lysis. Moreover, 
they are active component of bacterial toxins and also found in 
arthropod poisons and snake venoms [8]. The various functions 
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of PLs range from catalysis of nutrients to the formation of 
bioactive molecules. PLs are critical to life because of their 
diverse functions [10]. They have been implicated as virulence 
and pathogenic factors in many pathogenic microorganisms [11-
13].  Consequently, PLs of many pathogenic bacteria have also 
been associated with cell death and exhibits cytotoxic effects on 
human macrophages [14,15]. 

 The PLs are diverse in the site of action on phospholipids 
molecules and therefore they are classified into 4 types namely 
A, B, C and D (Figure 1) (Table 1). Phospholipase A (PLA) is 
further classified into two subtypes A1 that cleave the acyl ester 
bond at sn- 1 position and A2 cleaves at sn- 2 position. On the 
bases of cellular localization the isozymes of PLA1 is divided 

into two groups i.e. intracellular and extracellular enzymes 
(Figure 2) [16]. Similarly, PLA2 has been sorted into 5 main 
types that further contain different groups (group I-XV) (Figure 
3) [17]. Some PLs hydrolyze both acyl groups and are termed 
the phospholipases B (PLB), also known as lysophospholiapse 
[18]. Enzymes grouped under phospholipase C (PLC) cleaves 
glycerophosphate bond on the glycerol side, while phospholipase 
D (PLD) catalyses the removal of base group on the polar side 
of phospholiapse [19,20]. The PLC and PLD are therefore also 
known as phosphodiesterases. Till now, 13 PLC isoenzymes have 
been identified that are grouped into six different subfamilies 
(Figure 4) [20]. There are two isoforms of PLD (Figure 5). In 
addition to bacteria, PLD has been reported in many plants, 
viruses, worms, flies and yeast [21].

Table 1: Types and properties of phospholipases.

S.No Types Subtype EC number Cleavage site in 
phospholipids Product

1
Phospholipase A 

(PLA)

PLA1 3.1.1.32 SN-1 acyl chain Fatty acid and 
lysophospholipd

2 PLA2 3.1.1.4 SN-2 acyl chain Arachidonic acid and 
lysophosphatidic acid

3 Phospholipase B 
(PLB)

Both SN-1 and SN-2 
acyl chain

4 Phospholipase C 
(PLC)  EC 3.1.4.3 Before phosphate

Diacylglycerol and a 
phosphate-containing 

head group

5 Phospholipase D 
(PLD) EC 3.1.4.4 After Phosphate Phosphatidic acid and 

an alcohol

Figure 1: Site of action of different phospholipases in phospholipid molecule.

Figure 2: Isoforms of PLA1 and their function.
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Figure 3: Types of PLA2 and their role.

 

Figure 4: Isozymes and different splicing variants of PLC.

 

Figure 5: Isoforms of mammalian PLD.

Structural analysis
It is very important to understand the three dimensional 

structure of enzyme to examine its significant role in the 
pathophysiology of the microorganisms in disease. PLA1 
contains the lipase consensus sequence (Gly-x-Ser-x-Gly), a 
catalytic triad (Ser-Asp-His) with serine at its active site and 

shares a multiple conserved motifs. Intracellular PLA1 mainly 
contains DDHD domain and some of them have a sterile alfa 
motif (SAM) which is important for the binding of enzyme to 
the intracellular membrane [22]. Extracellular PLA1 contains 
surface loops known as lids, β5 loops and β9 loops. Subfamilies 
present in secretary PLA1 mainly varies due to the length of lids 
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and β9 loops. Notably, PLA1 that posses triacylglycerol hydrolase 
activity generally have long lids (22-23 amino acids) and long β9 
loops (18-19 amino acids), whereas PLA1-α and  PLA1- β that do 
not exhibits triacylglycerol hydrolase activity contain short lids 
(7-12 amino acids) and β9 loops (12-13 amino acids) [23].

PLA2 belongs to the α/β hydrolse family. β- sheets are 
generally present in the enzyme core whose strands are 
interconnected by α- helices and catalytic serine is present in 
tight turn between α/β strand. Secreted PLA2 contains His-Asp 
catalytic diad and a Ca2+ binding site, whereas cytosolic PLA2 
contains Ca2+ dependent phospholipid domain and its active 
site is covered by the cap region [24]. Plasma platelet activating 
factor-acetylhydrolase and Lysosomal PLA2 contains lipase 
motif (Gly-x-Ser-x-Gly), the catalytic Ser-Asp-His triad, and 
serine active site. They also contains the N-glycolation site and 
an N-terminal signal sequence [25].

PLC contains X and Y catalytic domain that comprise highly 
conserved amino acid regions in isozymes. They are located 
between EF-hand motif which is a helix-turn-helix structural 
domain that binds Ca2+ ions and C2 domain that also contains 
three to four Ca2+ binding sites and regulates the enzyme 
activity. It has been shown that plekstrin homology (PH) domain 
is located in the N- terminal region and it provides the passage 
onto the membrane surface [20]. PLC- β and PLC-γ contains an 
additional COOH- terminal and SH domain respectively that is 
responsible for the membrane attachment and in mitogenic 
signaling [20]. PLD contains the sequence motif HXK(X)4D, 
which is found twice without exception in all known isoforms 
of enzyme and denoted as HKD motif [21]. This motif has been 
involved in signal transduction and lipid biosynthesis in many 
pathogenic bacteria [26]. Phox consensus sequence (PX), the 
(PH) domain is the other highly conserved regions which are 
involved in lipid binding [27].

Mechanism of action
The PLA gene family member shares a multiple conserved 

motif that includes G-X-S-X-G motif, a catalytic triad and cysteine 
residues that moderated disulphide bond formation. It contains 
the N-terminal signal sequence followed by catalytic triad with 

Ser154, Asp178, and His249.  Glycosylation is critical for the 
catalytic activity and four acceptors sequences of N-glycosylation 
sites are present at amino acid 50, 58, 66 and 357 positions [28]. 
The catalytic action of PLA2 proceeds through the Serine–acyl 
intermediate that is present in a pentapeptise sequence G-L-L-
G-S using serine-228 as nuclephilic residue. This catalytic serine 
residue is termed as “nucleophilic elbow”. It has been reported 
that in addition to Serine-288, Asp-549 and Arg-200 is also 
found to be  essential for the activity [24]. 

The X and Y structural domain of PLC are responsible for the 
catalytic activity of the enzyme. Based on the structural analysis 
it has been reported that Lysine-438, Lysine-440, Serine-522 
and Arginine-549 are present at active site which are implicated 
in the binding with the phosphate group [20]. PH domain 
moderates the binding of enzyme to phospholipids. PLC-γ 
contains the long amino acid sequence that contain Src homology 
(SG) domain which mediated the interaction with other proteins 
[29]. Phospholipase D crystal structure reveals that it contain 
two motif from single active site and the histidine residue from 
one motif acts as a nucleophile in the catalytic mechanism of the 
enzyme forming an intermediate of phosphoenzyme whereas, 
the histidine residue of second motif cleaves the phosphodiester 
bond [26]. PH and PX domain also plays an important role in 
the catalysis of enzyme. PH domain helps in the localization 
of the protein whereas; PX domain is thought to mediate the 
protein- protein interaction. The lysine residue conserved in the 
structure is involved in phosphate binding [27].

Role in virulence and pathogenesis: Several bacteria and 
fungi produce extracellular phospholipases, which helps them 
to invade the host by damaging its cell membrane [8,30,31]. The 
presence of their activity is generally associated to the virulence 
of the pathogen. The strains of Candida albicans with highest 
phospholipase activity showed the greatest mortality in mice 
[8]. Also, only phospholipase activity was predictive of mortality 
among a number of candidate factors in C. albicans [32].  It has 
been reported that Aspergillus fumigatus was able to produce 
different type of phospholipases like PLA, PLB, PLC, and PLD 
[33]. Different phospholipases that play an important role in 
bacterial virulence and pathogenesis are mentioned in Table 2.

Table 2: Different bacteria possessing different type of phospholipases.

Organism Phospholipase type Function of enzyme References

Pseudomonas aeruginosa PLC Colonization of tissues [45]

C. perfringens PLC (alpha toxin) Host tissue invasion [34]

Clostridium novyi PLC (gamma toxin) Hemolytic activity [46]

L. monocytogenes PLC Bacterial escape from 
phagosomes [37]

Pseudomonas cepacia PLC Hemolytic activity [47]

Staphylococcus aureus PLC (beta toxin) Hemolytic activity [48,49]

Bacillus cereus PLC Protects against phagocytosis [50]

M. tuberculosis PLD, PLA, PLC Role in virulence and 
pathogenesis [38,51,52]

Rickettsia prowazekii PLA Host cell invasion [53,54]
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Arcanobacterium haemolyticum PLD Virulence determinant [55]

Cryptococcus neoformans PLB Necessary for central nervous 
system infection [56]

Yersinia enterocolitica PLA2 Promoting colonization [57]

Campylobacter coli PLA Haemolytic activity [58]

Yersinia pseudotuberculosis PLA Host cell invasion [59]

Helicobacter pylori PLA1 Host cell membrane disruption 
during invasion [60]

Campylobacter jejuni PLA Promoting colonization [61]

Legionella pneumophila PLA Bacterial detoxification of 
lysophospholipids [62]

Legionella pneumophila PLB, PLC, PLD virulence [63,64]

Campylobacter concisus Membrane bound PLA Haemolytic activity [65]

Neisseria meningitides, N. 
gonorrhoeae Outer membrane associated PL Autolysin [66]

A. baumannii PLD Virulence and Host cell invasion [36]

Plasmodium falciparum PLA2 Brain swelling [67]

B. melitensis PLA1 Polymyxin resistance and 
pathogenicity [35]

S. pneumoniae PLA2 Pulmonary inflammation [39]

Vibrio vulnificus PLA2 Lysis and necrotic death of 
epithelial cells [68]

Phospholipases are important virulence factors as they are 
able to cleave phospholipids in eukaryotic membranes and the 
products might act as signaling molecules, which ultimately 
leads to a number of events to occur favorable for the pathogen 
[14]. They help the bacterial pathogens to invade the host cells 
by destroying the phospholipids of cell membranes. The role 
of α-toxin (PLC) was confirmed when α-toxin mutant from a 
virulent strain of Clostridium perfringens was unable to cause 
tissue damage and necrosis in mice hind limbs after inoculation 
[34]. Also, they modulates phospholipid content of cell envelope 
of certain bacteria, which would be helpful for the pathogenesis 
of bacteria like PLA1 of Brucella melitensis is responsible 
for the resistance against polymyxin B and also contributed 
to host-pathogen interactions [35].  There are three PLDs in 
Acinetobacter baumannii and are major virulence factors as they 
are required for host cell invasion. All three PLDs were necessary 
for the full invasion and virulence as they work in concerted 
manner, confirmed when the inactivation of all three pld genes 
leads to the minimum invasion efficiency [36]. Moreover, they 
play an important role in pathogenesis of intracellular pathogens 
as they help the bacteria to escape from phagosomes in certain 
cases. Two PLC were found in Listeria monocytogenes which aid 
the bacterial escape from phagosomes as this was confirmed by 
creating its mutants. The individual mutants of plcA or plcB were 
two and 20 fold, respectively, less virulent, but a double mutant 
was 500-fold less virulent in mice deciphering the significance 
of this enzyme for the virulence and pathogenesis of the bacteria 
[37].

The intracellular lung pathogen, Mycobacterium tuberculosis 
also possessed phospholipases which are important for its 
virulence and pathogenesis too. There are four genes (plcA, 

plcB, plcC, plcD) that encode PLC enzyme. Mutation studies 
demonstrated that all four genes were required to encode a 
functional PLC. The expression of these genes was upregulated 
during first 24 hr of infection suggesting the role of PLC in the 
virulence of the bacteria [38].

Sometimes, they are very crucial to the pathogens that 
without them bacteria would be unable to survive in the 
host. One such example is the PLA2 enzyme of Streptococcus 
pneumoniae which elicits pulmonary inflammation during 
infection and is also required for lethal systemic infection [39]. 
PLA2 enzyme inhibitors almost blocked (diminished by >80%) 
the polymorphonuclear cells (PMN) transepithelial migration 
in vitro [40]. Also, PLA2-deficient mice were survived from 
S. pneumoniae bacteremia challenge which was otherwise 
lethal to wild-type mice [41]. The byproducts of this enzyme 
catalysis lead to the formation of certain metabolites that aid 
in the inflammatory processes and in that case phospholipase 
inhibition could be a more effective anti-inflammatory approach 
[42]. Like bacteria, snake venom is enormously rich in these 
enzymes and their inhibitors could prevent skeltel muscle 
necrosis and permanent injuries in snakebite victims [43].

They also play anabolic roles. There are two PLA2 that are 
pivotal in lipid droplet formation in case of Hepatitis C virus 
infection (HCV). Their knockdown studies showed that their 
function were irreplaceable and could not be restored even on 
complementation with each other and lipid droplet formation 
activity was also found to be impaired. These two PLA2 were 
found to be play an important role in HCV replication and 
pathogenesis and they could be a target for an anti-HCV drug 
[44-68].
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Conclusion
Phospholipids are key components of cell membrane of 

all eukaryotes. The pathogens vary in their preference for the 
usage of carbon sources during host colonization like mucus 
sugars, amino acids, lactic acid and many more [69]. In human 
host, phospholipids are abundant as they are the major building 
blocks of biological membranes. So, they serve as good candidate 
for carbon and energy source for the pathogens. Among them, 
phosphatidylcholine accounts for 50% of all phospholipids 
and its prevalence is upto 80% in the lungs [70,71]. During 
lung infections by pathogens like A. baumannii, P. aeruginosa, 
M. tuberculosis; phosphatidylcholine serve as nutrient source 
[72,73].  The pathogens must possess certain enzymes for the 
utilization of these phospholipids and phospholipases are 
such enzymes. The role of phospholipases in the virulence 
and pathogenesis of the disease is equally diverse as they are 
a diverse group of enzymes. These enzymes are involved in 
various processes like host cell membrane disruption [10], 
promote colonization [57], detoxification of toxic lipids [62], 
cell signaling, etc. They also help bacteria in various ways to 
cause disease in host and in some infections, these are the key 
enzymes. So, phospholipases could be used as probable drug 
targets to combat different bacterial infections. 

The different approaches may include the development 
of vaccines, identification of various enzyme inhibitors, and 
identification of agents that inhibit the production of enzyme. 
In today’s world, high throughput screening of small molecular 
inhibitors could also be possible in very short time [74].  As 
phospholipases are critical to some bacterial pathogens, their 
inhibition by various inhibitors could lead to the diminished 
virulence and they could be used as probable drug targets to 
combat the bacterial infections in future.
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