
Research Article
Volume 2 Issue 4- January    2024
DOI: 10.19080/AAPS.2023.02.555592

Arch Anim Poult Sci
Copyright © All rights are reserved by Kumar Venkitanarayanan

Effect of in feed Supplementation of  
Trans cinnamaldehyde and Caprylic Acid on  

Cecal Microbiome of Layer Hens

Indu Upadhyaya1, Abhinav Upadhyay2, Chi Hung Chen3, Hsin Bai Yin3, Meera S Nair4, Kendra Maas5, Abraham J 
Pelliserry6, and Kumar Venkitanarayanan2*
1Department of Extension, University of Connecticut, Storrs, USA 
2 Department of Animal Science, University of Connecticut, Storrs, USA
3Food Safety Laboratory at USDA-Beltsville Agricultural Research, USA
4Veterinary and Biomedical Sciences, Penn State University, University Park, USA 
5Microbial Analysis, Resources, and Services, University of Connecticut, Storrs, USA
6Department of Comparative Diagnostic and Population Medicine, College of Veterinary Medicine, University of Florida, USA

Submission: January 06, 2024; Published: January 11, 2024
*Corresponding author: Kumar Venkitanarayanan, Department of Animal Science, University of Connecticut, Storrs, CT- 06269, USA

Introduction

According to USDA-Economic Research Service, the US is the 
major poultry producer and ranks as the second largest exporter 
of poultry products worldwide. The US poultry sector is valued 
over $20 billion, primarily from broiler production, followed by 
eggs, turkey and other poultry products [1-2]. Despite progress in 
production standards, poultry food safety concerns continue to be 
a challenge for the poultry production sector. Of the total foodborne 
outbreaks reported, 13% of the cases have been attributed to 
contaminated poultry products, accounting for at least 32 poultry-
related outbreaks in the past decade and a half that have resulted 
in illness to over a million people [3-5]. Foodborne pathogens  

 
can cause gastrointestinal dysfunction and account for 48 million 
illnesses, 128,000 hospitalizations, and 3,000 deaths annually in 
the United States [3,4,6]

Among the foodborne pathogens, Salmonella enterica serovar 
Enteritidis (SE) is one of the major bacteria in the United States 
responsible for causing enteric illnesses in humans, with eggs 
as the primary source of human infections [7]. Approximately 
109 billion eggs were produced in 2018, and the demand of 
eggs has grown in the United States over the last decade, with an 
annual consumption of eggs estimated at 293 per person [2,8]. 
Thus, poultry egg safety is a major concern to the government, 
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Abstract

In this study, the effect of in-feed supplementation of two phytochemicals, Trans-cinnamaldehyde (TC) and Caprylic acid (CA) on the cecal 
microbiome of 40-wk-old layer chickens in the presence of Salmonella Enteritidis (SE) was determined. Single-comb, White Leghorn hens 
(N=126) were randomly assigned to 6 groups (n = 21/group): a negative control (no SE, no compound), a positive control (SE, no compound), 2 
compound controls (no SE, 1% vol/ wt TC or 1% vol/wt CA), TC treatment (SE, 1% TC) and CA treatment (SE, 1% CA). On the day of arrival, birds 
were tested for any inherent Salmonella (n = 3/experiment), and in-feed phytochemical supplementation was provided for the entire duration of 
the study (60 days). On day 8, birds in the positive controls and phytochemical supplemented groups were orally challenged with SE @~10 log10 
cfu/bird by crop gavage.

Cecal contents collected from birds on days 0, 1, 7, 10, 20, 30 and 60 were subjected to 16S rRNA sequencing by Illumina Miseq. In-feed 
phytochemical supplementation did not affect the cecal population of the major bacterial phylotypes, including Firmicutes, Bacteroidetes and 
Proteobacteria (p>0.05). Moreover, phytochemical supplementation decreased SE in the cecum, yolk and eggshell of birds when compared with 
controls (p<0.05), potentially indicating that TC and CA could be used as feed additives to reduce foodborne salmonellosis in chickens without 
adversely affecting the endogenous cecal microflora of chickens. 
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stakeholders and consumers from the public health and economic 
standpoints. From epidemiological studies, it has been established 
that chickens are asymptomatic carriers of SE, promoting 
environmental dissemination and leading to possible human 
outbreaks and illness via consumption of contaminated, raw or 
undercooked eggs [9]. Various interventions aimed to decrease 
the incidence of egg-associated foodborne illnesses are generally 
employed post-harvest, such as washing with chlorine and iodine-
based sanitizers. In addition, on-farm strategies to reduce SE at 
different phases of the production process prior to processing 
have been previously employed [10,11]. 

In this regard, pre-harvest interventions, especially the 
application of feed additives to modulate the gastrointestinal 
microbial community (the gut microbiome) with minimal impact, 
have been the focus of growing interest. Following the 2006 
European Union ban on the use of prophylactic antibiotic-feed 
additives as growth promoters (Regulation (EC) No 1831, 2003) 
and calls for similar regulation in the U.S. [12-16] have motivated 
the industry and federal regulatory agencies to act upon the current 
crisis of antibiotic resistance. Numerous strategies for reducing 
pathogen colonization in poultry have been explored with variable 
efficacy including, chemical targets such as oligosaccharides, 
organic acid and antibiotics, as well as biological agents such 
as competitive exclusion bacteria and bacteriophages [17-24]. 
Limited efficacy of previously mentioned methods coupled with 
concerns over chemical toxicity and possible evolution of multi-
drug resistance in bacteria has heightened interest to investigate 
the potential for alternative, naturally derived antimicrobials for 
controlling foodborne pathogens [25,26].

The major factors to evaluate effectiveness of natural 
antimicrobial as a potential feed additive include a) testing its 
efficacy in controlling the foodborne pathogen of interest and b) 
its impact on the host’s gut microbiome [27]. The importance of 
gut microbiome for the health and nutrition of the host has been 
well established [27-30], and antibiotic withdrawal from feed 
based on the FDA guidance for poultry industry has previously 
been reported to modulate the chicken microbiome [31-34]. 
Therefore, identifying and developing antibiotic alternatives will 
require evaluating their effect on specific pathogens and the host 
gut microbiome before recommending for use in poultry. 

Historically, plant extracts and their purified derivative 
compounds have been extensively used in herbal medicine, either 
prophylactically or therapeutically, to prevent infections or as 
treatment against diseases, respectively [35]. Many studies have 
previously reported the identification of plants that produce a 
wide array of Phytochemicals with antimicrobial activity [36-
38]. Trans-cinnamaldehyde (TC) or trans-3-phenylprop-2-enal, a 
major bioactive component derived from cinnamon (Cinnamomum 
zeylandicum), has already been proven to display antibacterial 
properties against both Gram-negative and Gram-positive bacteria 
[38]. It is a member of the cinnamaldehyde group of compounds 
and considered a GRAS (generally regarded as safe) chemical 

approved for use as a food additive by the U.S. FDA (approval 
TC-21CFR182.60). Previous research conducted in our research 
group identified that TC was capable of reducing S. Enteritidis in 
chicken cecal contents in vitro and in various internal organs in 
broilers [39].

Furthermore, chickens supplemented with TC in-feed had 
reduced egg yolk and shell contamination with SE without 
adversely affecting egg production parameters or consumer 
acceptability of eggs obtained from TC-treated birds [40]. In 
addition, functional mechanistic inferences derived from follow-
up cell culture and gene expression analysis studies revealed 
that TC reduced S. Enteritidis colonization in primary oviduct 
epithelial cells and survival in chicken macrophage cell line by 
downregulating critical virulence genes in the bacterium [40].

In addition to plant-derived compounds such as TC, researchers 
have extensively studied the antimicrobial properties of lipids and 
their esters [41,42]. Medium-chain fatty acids (MCFAs) classified 
under the group of free fatty acids have shown bactericidal activity 
against Gram-positive and Gram-negative bacteria [43,44]. 
Caprylic acid (CA) (octanoic acid) is a naturally occurring MCFA 
that is commonly found in coconut oil, breast milk, and bovine 
milk [45,46]. It also has a GRAS status (CFR 184.1025) and can 
be added to food as an additive. Previous research investigations 
conducted in our laboratory as well as other researchers indicated 
that in-feed CA supplementation decreased Campylobacter jejuni 
and SE carriage in broiler chickens [47-49]. Additionally, CA as an 
antimicrobial feed additive was effective in controlling egg-borne 
transmission of SE in layers [50].

With current developments in next generation “omics” 
technology, extensive research has been directed towards 
chicken gut functionality for enhancing poultry productivity 
and resistance against various enteric pathogens [51]. Several 
researchers have investigated the effects of a variety of alternative 
antimicrobial feed additives on gut microbial communities in 
poultry [31,52-57]. Prior trials conducted in layers have mainly 
focused on the reduction of Salmonella and improving growth 
performance [40,58]. Similarly, a few studies investigating the 
microbiome of broilers fed with essential oils and prebiotic fiber 
supplements have been conducted [59-63], but, to the best of our 
knowledge, this is the first study to investigate the microbiome of 
layer chicken that have been challenged with Salmonella and fed 
with natural compounds such as TC and CA. The objective of the 
current study was primarily to determine the relative effects of TC 
and CA on layer cecal microbiome at the community level using 
16S rRNA sequencing by Illumina MiSeq platform. In addition, a 
comprehensive assessment of dataset related to the taxonomic 
composition of the cecal microbiome in 40-wk old layer hens was 
evaluated.

Materials and Methods

Ethics Statement

All the animal work described in this study was approved by 
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the Institutional Animal Care and Use Committee (IACUC) at the 
University of Connecticut, and all experiments were performed in 
accordance with the approved guidelines and regulations.

Bacterial strains and dosing

A four-strain cocktail of SE (SE-12 (chicken liver, phage type 
14b), SE-21 (chicken intestine, phage type 8), SE-28 (chicken 
ovary, phage type 13a) and SE-31 (chicken gut, phage type 13a); 
source:- Connecticut Veterinary Diagnostic Laboratory, University 
of Connecticut) was used to inoculate the birds. To facilitate 
selective enumeration of S. Enteritidis from the necropsy samples, 
each strain was pre-induced for nalidixic acid (NA; Sigma Aldrich, 
St. Louis, MO) resistance (up to 50µg/mL) [64]. In four separate 
sterile tubes containing 10 mL tryptic soy broth (TSB; Difco, 
Becton Dickinson, Sparks, MD), 100 µL of each NA-resistant SE 
isolate was separately cultured overnight. Further, the respective 
cultures were later transferred to separate flasks containing 
100 mL TSB supplemented with 50µg/mL of NA and incubated 
overnight in a shaking incubator at 37°C (100 rpm).

The four SE cultures were pooled equally into sterile tubes 
and centrifuged at 3600 g for 15 min at 4°C. The pellet was washed 
and resuspended in 100 mL of phosphate-buffered saline (PBS, pH 
7.0), and used as the inoculum. Bacterial count confirmation of the 
individual SE cultures and the four-strain cocktail was performed 
by serial dilution and plating of 0.1-mL portions of appropriate 
dilutions on xylose lysine desoxycholate agar (XLD; Difco) plates 
containing NA (XLD-NA) and incubating the plates at 37°C for 24 
h [58]. 

Experimental birds and housing

Forty-week-old, Single comb, White Leghorn layer hens 
(Salmonella– free) were procured from the University of 
Connecticut poultry farm and housed in bedded floor pens, with 
age-appropriate ambient conditions (16 hours light-8 hours 
dark cycle, 21℃) at the Isolation Facility of the University of 
Connecticut. The birds were provided nonmedicated feed ad-
libitum, and Salmonella-free water. The hens were randomly 
allocated to 6 treatments (N=126, n=21): (a) negative control 
(no S. Enteritidis challenge and no supplemental TC or CA), (b) 
TC control (no S. Enteritidis challenge but 1.0% supplemental 
TC [vol/wt]), (c) CA control (no S. Enteritidis challenge but 1.0% 
supplemental CA [vol/wt]), (d) a positive control (S. Enteritidis 
challenge but no supplemental TC or CA), (e) a 1% TC treatment 
(S. Enteritidis challenge), and (f) a 1% CA treatment (S. Enteritidis 
challenge). TC was supplemented in the feed for 60 days, starting 
on day 0. Appropriate amounts of TC and CA were added to feed 
and mixed thoroughly to obtain 1% concentration. Three birds 
from each treatment group were sacrificed and ceca samples were 
collected on day 0, 1, 7, 10, 20, 30 and 60 days. On day 8, birds in 
the positive control, TC, and CA treatment groups were challenged 
with SE (10 log10 CFU/bird) by crop gavage. From day 20, (10 days 
post challenge), eggs were collected from each treatment group on 
day 20, 30 and 60 and tested for the presence or absence of SE. 

At the end of 60 days, the birds from all treatment groups were 
euthanized by CO2 asphyxiation. Cecum samples from birds were 
collected (1g/10 mL of PBS) at each time point for SE detection 
[40].

Detection of S. Enteritidis in cecal contents

Enumeration of SE in the cecal contents were determined 
as described previously [40]. Whole ceca with their contents 
collected on day 10, 20, 30 and 60, were weighed and homogenized. 
The respective homogenate was serially diluted (1:10) in PBS, 
and suitable dilutions were plated on XLD-NA plates for SE 
enumeration. Representative colonies from XLD-NA plates were 
confirmed as Salmonella by use of a Salmonella rapid detection 
kit (Microgen Bioproducts Ltd.). When colonies were absent 
via direct plating, samples were enriched in 100 mL selenite 
cysteine broth (Oxoid) to test for surviving Salmonella, and the 
samples were enriched by enrichment in 100 ml selenite cysteine 
broth (Oxoid) and incubated at 37°C for 48 hours. Subsequent to 
enrichment, the samples were streaked on XLD-NA plates to check 
for the presence of SE [40]. 

Detection of S. Enteritidis on egg surfaces and in egg 
contents

The presence of S. Enteritidis on eggshell surfaces and in egg 
contents was determined according to the method of Miyamoto 
et al  [65]. Sterile stomacher bags filled with 50 mL of selenite 
cysteine broth supplemented with NA (50 ng/mL) was used 
to wash individual eggs for a period of 2 min. The eggs were 
removed after rinsing and the broth was incubated at 37°C for 
48 h. Subsequently, the enriched broth was streaked on XLD-NA 
plates to detect the presence of S. Enteritidis colonies which were 
confirmed as Salmonella by use of a Salmonella rapid detection kit 
(Microgen Bioproducts Ltd., Camberley, United Kingdom). Eggs 
rinsed in the selenite cysteine broth were subsequently surface 
disinfected with 70% ethanol, dried and, aseptically cracked open 
to void the egg contents into separate stomacher bags containing 
50 ml of selenite cysteine broth with NA. The stomacher bags 
with the egg contents or shells were stomached for 1 min to 
ensure uniform homogenization. The bags were subsequently 
incubated at 37°C for 24-48 h to detect Salmonella present inside 
the egg. Confirmation of SE colonies from the enriched broth was 
determined as previously mentioned. 

DNA extraction, PCR amplification, and sequencing of 
taxonomic marker

DNA from 0.25 g of fecal sample was extracted using the MoBio 
PowerMag Soil 96 well kit (MoBio Laboratories, Inc) in accordance 
with the manufacturer’s protocol for the Eppendorf ep Motion 
liquid handling robot [66]. Extracts of DNA were quantified using 
the Quant-iT PicoGreen kit (invitrogen, ThermoFisher Scientific). 
Amplification of partial bacterial 16S rRNA genes (V4) was carried 
out by using 30ng DNA extracted as template. Amplification of the 
V4 region was done using 515F and 806R using Illumina adapters 
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and dual indices (8 basepair golay on 3’ (Caporaso 2012), and 8 
basepair (bp) on the 5’ [67].

Triplicate samples were amplified using Phusion High-
Fidelity PCR master mix (New England BioLabs) with the addition 
of 10µg BSA (New England BioLabs). Incubation of the PCR 
reaction was done at 95˚C for 3.5 minutes, the 30 cycles of 30 
s at 95.0°C, 30 s at 50.0°C and 90 s at 72.0°C, followed by final 
extension as 72.0°C for 10 minutes. PCR products were pooled 
for quantification and visualization using the QIAxcel DNA Fast 
Analysis (Qiagen). Normalization of PCR products was done based 
on the concentration of DNA from 250-400 bp then pooled with 
the QIAgility liquid handling robot. Pooled PCR products were 
cleaned using the Gene Read Size Selection kit (Qiagen) according 
to the manufacturer’s protocol. The cleaned pool was sequenced 
on the MiSeq using v2 2x250 base pair kit (Illumina, Inc [66].

Sequence Analysis

The microbiome analysis was performed as a completely 
randomized design with treatments done in replicates of four, 
following published protocol [66]. Mothur 1.36.1 was used to filter 
and cluster the sequences based on published protocol with slight 
modifications [67]. Briefly, Operational taxonomic units (OTUs) 
were clustered at 97% sequence similarity. Downstream analysis 
of samples was conducted using R version 3.2. To calculate alpha 
diversity, inverse Simpson was used to measure the richness and 
evenness of the OTUs.

Tukey’s test was used to analyze the effect of both treatment 
and day on the alpha diversity. Beta-diversity was estimated 
as the difference in bacterial composition based on treatment 
and time by coupling Bray-Curtis Dissimilarity with non-metric 
multidimensional scaling (NMDS) for ordination from any 
resemblance matrix. A permutational multivariate analysis 
(PERMANOVA, adonis function, 999 permutations) was done 
to analyze the effect of various treatments on the bacterial 
community composition. Finally, the relative abundance of OTUs 
of major phyla, order, and genera were determined to assess the 
effect of treatment [66]. To identify changes in groups of bacteria 
based on treatment, Tukey’s test was used, and the significance 
was detected at P < 0.05.

Results and Discussion

The cecum constitutes the largest reservoir of bacteria in the 
poultry gasatrointestinal tract (GI). Before the advent of modern-
day sequencing, research that focused on studying the poultry 
GI bacteriome depended on classical cultivation techniques [68]. 
However, during the past two decades, the 16S rRNA gene has 
been regarded as the primary biomarker to identify bacteria in 
numerous environments, including the poultry GI tract. Studies 
that used individual 16S rRNA gene clone libraries offered 
valuable insight into the diversity of poultry GI bacteriome by 
generating high-quality sequences. But these studies were limited 
to relatively few sequences that were affordable to scientists. 

Hence, a comprehensive effort investigating the diversity and 
composition of the poultry GI bacteriome was not possible until 
next-generation sequencing (NGS) became available [68].

High-throughput NGS technologies have been established as 
powerful tools for comprehensive analysis of complex bacteriomes 
[69,70]. Previously, GI bacteriomes of chickens and turkeys 
have been compared using such NGS technologies employing 
either QIIME or Mothur packages [68] However, the effect of in-
feed supplementation of a natural antibiotic alternative has not 
been well studied in a comparative platform. Although previous 
studies have identified that both tools are relatively similar in 
identifying the most abundant genera, despite the database 
[71], there is insufficient knowledge with respect to chicken 
microbiome. Additionally, the Mothur package assigns OTUs to a 
larger number of genera and in larger relative abundance for less 
frequent microorganisms. Mothur is also believed to have more 
favorable rarefaction curves and a larger analytic sensitivity when 
used with a suitable microbial gene database [71]. Therefore, this 
platform was chosen to read the sequenced samples from chicken 
microbiota.

Effects of treatments on SE survival in cecum and on 
egg:

The dietary supplementation of TC and CA at 1% significantly 
decreased the amounts of SE on cecal contents and on eggshells 
and in yolks (p<0.05). As observed in Figure 1a, TC and CA at 
1% consistently decreased the amounts of Salmonella Figure 1a 
from cecal contents on Day 10, 20, 30 and 60 of the study periods 
(p<0.05). These results were similar to previous reports [40-58] 
wherein, TC and CA, fed to layers at different concentrations, were 
able to reduce the SE colonization of various organs including 
cecum. While the controls still had 65% of the samples positive 
for SE in cecum, 1% TC and CA reduced the pathogen to 35% and 
30% respectively (p<0.05). Moreover, in-feed supplementation 
of 1% TC and CA decreased Salmonella prevalence on egg yolk 
and in eggshell (p<0.05) consistently until day 60, as seen in Fig 
1b. By the end of the trial, 1% TC and CA significantly reduced 
SE contamination of yolk and eggshell to 0 and 12% and to 1.5% 
and 4.8%, respectively, compared to that for control birds, which 
produced 20% positive eggs based on yolk and 45 % positive eggs 
based on shell (Figure 1b).

S. Enteritidis primarily colonizes the chicken cecum [72,73] 
and spreads to the spleen and liver by lymphatic or circulatory 
routes followed by subsequent colonization and spread to the 
reproductive organs in layers, thereby contaminating the yolk. 
These results indicated that in-feed administration of TC and 
CA significantly decreased SE colonization in layer chickens 
and reduced the egg-borne transmission of the bacterium. In 
addition to reducing SE levels on eggshell and in the yolk, TC 
supplementation decreased pathogen populations in the cecum 
when compared to those in control birds (p<0.05). 
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Temporal changes in poultry cecal microbiome fed 
with phytochemicals.

We found minimal temporal changes in the cecal microbiome, 
which were observed across treatments. The inverse Simpson 
diversity index for abundance and evenness from each bird for 
60 days showed variation in dominant species between control 
and treatments, as depicted in Figure 2a. On day 1, both CA and 

TC treatments had a wide range of bacterial communities when 
compared with limited variation in controls. In comparison with 
microbial diversity from day 7 through 30, there were changes 
observed by the end of day 60 between controls and treatments, 
especially in CA which had a wider diversity. Moreover, CA 
also exhibited more richness and abundance in the bacterial 
communities by end of day 60 when compared to controls as 
observed in Shannon even alpha diversity indices.

\

Figure 1:   Effect of TC and CA on S. Enteritidis in (a) cecum, and (b) egg contamination of 40-week-old layer hens on d-10, d-20, 
d-30 and d-60 of the trial (P <0.05). Values with different letters (a, b, c) differ significantly within the same time point, between 
treatments (P<0.05).
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\

Figure 2: Effect of TC and CA on the alpha diversity of cecal microbiome in 40-week old layer hens over 60 days and based on 
inoculation status. (a) The box plot indicates inverse Simpson indices of treatments on d-0, 1, 7, 10, 20, 30 and 60. (b) The box 
plot indicates inverse Simpson indices of treatment on the groups inoculated (Yes) and not inoculated (No) with S. Enteritidis as 
denoted in text

Trans-cinnamaldehyde treatment on day 7 was the most 
significantly different community when compared with other 
time points within the group including day 1, 20, and day 60. In 
addition, the same time point on day 7 was significantly different 
from the control treatment. This time point may denote a critical 
change in the microbial diversity occurring in chicken fed with 

TC which may be responsible for the antimicrobial effect of the 
phytochemical against pathogenic bacteria such as Salmonella. 
However, when clustering of the cecal microbiome from birds 
at the OTU level was conducted using NMDS as described in the 
methods, the results did not represent clear groupings by time 
(Figure 3). To test the relative effects of time on experimental 
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treatments affecting the cecal microbiome, permutational 
MANOVA was employed. Although there were outliers, there was 

no significant difference in the beta diversity of different samples 
over a period of time.

\

Figure 3: NMDS plot illustrating chicken microbiome beta diversity in 40-week-old layer. The key on right depicts color and shape 
coding for S. Enteritidis (inoculated), time (day) and treatment (compound).

\

Figure 4: Relative abundance for sequences by treatment, time and inoculation with taxonomic classifications performed with 
Mothur as described in the text. Only sequences with a total relative abundance greater than 5% are shown. 
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In order to represent the cecal microbiota composition and 
determine potential changes through time, clustering, hypothesis 
testing and taxonomic classifications of sequences to the genus 
level was conducted using the RDP classifier in Mothur platform 
with OTU clustering at 97% sequence similarity. No significant 
difference was observed in the different bacterial communities 
over time (Figure 4). From day 0 through day 60, the cecal 
community was dominated by three major groups of bacteria 
namely Bacteroides, Firmicutes and an unclassified group which 
did not contain a sequence similarity to known microflora. There 
was no significant difference between Proteobacteria due to time, 
this shows that the compounds did not influence the bacterial 
community in the chicken cecum over time. These data are 
consistent with previous results that identify various members of 
GI microbiome of poultry [27]. 

However, exhaustive sequencing with modern methods can 
establish valuable new information on the generic composition 
of microbial community in the chicken ceca and how it varies 
through time. In a feed supplement study, it is important to have 
proper understanding and management of temporal changes in 
the GI microbiome in response to the supplement, so that bird 
health can be maintained, and productivity can be improved. 

Effects of phytochemical treatment versus inoculation 
on cecal microbiome

Treatment effects on Salmonella in the cecal microbiome were 
non-significant. The inverse Simpson diversity index for abundance 
and evenness and the Shannon even alpha diversity indices for 
richness from birds fed with control vs treatment showed no 
significant variation in dominant species between control and 
treatments as depicted in Figure 2b. Similarly, the clustering of 
the cecal microbiome from birds at the OTU level, using NMDS did 
not reveal clear groupings by inoculation meaning there was no 
significant difference in the beta diversity of samples inoculated 
with Salmonella or free of the pathogen (Figure 3). Moreover, 
there was no significant difference in the bacterial communities. 
Similar to the temporal spread of the cecal community, three 
major groups of bacteria namely Bacteroides, Firmicutes and the 
unclassified group were abundant. Interestingly, there was no 
significant change observed in the Gammaproteobacteria which 
encompass Salmonella across the groups. We observed that TC 
and CA at 1% concentration are effective in reducing Salmonella 
in cecum Figure 1a &1b. 

However, various factors can affect the occurrence of a specific 
group of bacteria in the analysis, including bird type i.e., whether 
it is a broiler or a layer hen; age of the bird; DNA extraction and 
the platform utilized for the sequencing itself. Therefore, any 
of the above conditions could potentially contribute to lack of 
abundant Salmonella or absence of a significant difference in 
the Gammaproteobacterial across groups even after inoculation. 
Similarly, researchers have observed that higher colonization of 

Salmonella and Campylobacter in poultry tend to occur without 
significant shifts in the native microbiome. and observed that the 
alpha diversity remained conserved with moderate changes in 
beta diversity among chicken that were colonized with Salmonella 
and Campylobacter jejuni, respectively [74,75]. 

Overall composition of cecal microbiota in layers

The comprehensive clustering of the cecal microbiome from 
birds at the OTU level was conducted using NMDS, but with the 
exception of a few outliers, the results did not represent clear 
groupings overall (Figure 3). This was in line with the results from 
the beta diversity of different samples over a period of time and 
with inoculation. The cecal microbiota of layer hens was primarily 
dominated by Bacteroides, Firmicutes and the unclassified group 
of bacteria (Figure 4). Other minor abundant taxonomic groups 
included Clostridia (not included in Firmicutes), Roseburia, 
Proteobacteria and Lactobacillus. The abundance levels of  these 
groups  did not show significant difference (p > 0.05); however, 
Lactobacillus growth was favored in birds supplemented with 1% 
CA over a period of time when compared to control and 1% TC 
treatment. 

As observed in the temporal changes in inverse Simpson 
and Shannon even indices, CA showed a wider alpha diversity 
by end of day 60 including more richness and abundance in the 
bacterial communities when compared to controls (Figure 2b). 
The increased prevalence of Lactobacillus could potentially have 
led to the difference observed in the alpha diversity. Similarly, TC 
treatment on day 7 was the most significant in alpha diversity 
when compared with other time points within the group including 
day 1, 20, and day 60. A surge in Lactobacillus at this particular 
time point is observed in the non- challenged treated group with 
1% TC (Figure 4). This may have caused the change in alpha 
diversity and the time point may denote a critical change in the 
microbial diversity occurring in chicken fed with TC. Furthermore, 
taxa considered as putative pathogens were a minor component 
of the community with no significant difference among various 
groups over a period of time. 

Conclusion

In-feed supplementation of TC and CA did not harm the 
population of the major chicken cecal bacterial phylotypes, 
including Firmicutes, Bacteroidetes and Proteobacteria (p>0.05). 
Moreover, TC and CA supplementation decreased S. Enteritidis in 
the cecum, yolk and eggshell of birds when compared with controls 
(p<0.05). These results suggest that TC and CA could potentially be 
effective as feed additives in decreasing S. Enteritidis colonization 
in chickens without unfavorably affecting the endogenous 
cecal microflora of chickens. In addition, the cecal microbiome 
evaluation done in this study warrants further research to identify 
unclassified taxonomic groups.
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