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Introduction

One of the most critical neuropathological features of 
traumatic brain injury (TBI) is axotomy [1-5]. Even in mild (m) 
TBI, diffuse axotomy is easily and consistently observed as axons 
that end in swellings and dislocation from the distal part of the 
axon [6-8]. Integrity of axons can be measured in the clinical 
population with diffusion tensor imaging (DTI) [9-12]. Patient 
outcome has been correlated with DTI results, [13-16] although 
subacute imaging may be most effective in this regard [17,18]. 
Correlations may also be stronger for severe and moderate as 
opposed to mild injuries [19]. DTI results have also been shown 
to correlate with the degree of diffuse axonal injury (DAI) 
as measured with amyloid precursor protein (APP) staining 
that accumulates in the axonal swelling [20,21]. Treatment 
assessments have typically been focused on reduction of this 
axonal injury [22-29], although it has also been recognized 
that some measures of DAI improve over time while cognitive 
dysfunction persists [30].

Because axotomy also occurs during preparation of ex vivo 
brain slices, it could be argued that this methodology should 
not be used for study of mechanisms associated with TBI. 
Vibratome-axotomized neurons can certainly be identified at  

 
the surface of acute slices (Figure 1A & 1B). This is one reason 
most investigators performing recordings in slices choose 
neurons that are at least one cell layer deep to surface neurons, 
and typically 40-60 m into the tissue. Creation of ex vivo slices 
for study of normal physiological function has been a staple 
of neuroscience research for decades [31,32]. The benefits of 
stability, visualized access to specific cell types and placement 
of electrodes, as well as feasibility of drug application have been 
previously described [33-35]. However, the idea that slicing 
produces pathology has also been used to create a model of 
post-traumatic epilepsy utilizing organotypic hippocampal 
slices that survive for weeks [36-40]. In this model, interictal-
like epileptiform activity is first observed after 14 days in vitro, 
while ictal-like activity is seen by 21 days [38]. The fact that this 
abnormal activity develops in days and not hours suggests that 
it may be due to synaptic reorganization that is secondary to 
the axotomy and thus unlikely to play a role in the physiology 
of acute slices.

We recently chose to use the acute slice to study physiological 
effects of trauma, specifically in order to target the axotomized 
neurons which are in the minority and located diffusely within 
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the cortex after a mild injury, [6,41-43]. Identification of the 
neuron as either axotomized or intact prior to the recording was 
made simple by the use of YFP-h mice, in which YFP is localized to 
a subset of layer V pyramidal neurons [44]. The ability to identify 
the status of the axon prior to the recording is a benefit over 
post-recording attempts to identify dye-filled neurons, which 
can have a low recovery rate [45]. In our studies a mild central 
fluid percussion injury was performed and acute slices were 
made 1 or 2 days after injury or sham-injury or in age-matched 
naïve mice. Care was taken to create coronal sections by blocking 
the brain with a brain slicer matrix (Zivic Instruments). While 
even a coronal block can still produce transection of dendrites 
or axons for neurons within rostral parts of the cortex, in our 
TBI studies, neurons selected for recordings were more caudally 
located, within somatosensory cortex. 

In addition, chosen neurons were deep to the surface and 
thus were not vibratome-axotomized. Despite the initial focus 
on TBI-axotomized neurons, we found that in traumatized brain, 
pyramidal neurons with axons intact to the subcortical white 
matter also differed from control neurons. Although both intact 
and axotomized neurons of the injured brains were different 
from non-injured controls, their time course and properties 
were often also different from each other [46,47]. We suggest 
that this may be due to feedback selectively from the intact 
neurons that may then influence homeostatic processes [47]. 
Because intact neurons of the injured brain were different from 
intact neurons of the control brain, this suggests that the injury 
is at least creating additional abnormalities to any that might be 
induced by vibratome slicing.

Figure 1: Axotomized and intact layer V pyramidal neurons after creation of coronal brain slices from naive YFP-h mice.  A) Image of YFP-
labeled pyramidal neurons taken during from live slice. Both axotomized (white arrowhead) and intact neurons (gray arrow) can be seen 
in the same slices. Scale bar = 0.1mm. B) Axon severed at white arrowhead (same as in A). Scale bar for B and C = 0.05mm. C) Intact 
axons projecting into subcortical white matter from gray arrows in A. D-F) Images from confocal microscope of slices ixed and mounted 
after recordings. D) Example of a layer V pyramidal neuron axotomized near soma as indicated by axonal swelling. Scale bar = 0.01mm. 
E) Example of axotomy at a more distant site from soma. Scale bar in E = 0.03mm for E and 0.019 for F. F) Example of pyramidal neuron 
with apical dendrite projecting to layer I and axon projecting to and turning and following subcortical white matter. G) Spontaneous EPSCs 
recorded from an intact (left) and vibratome-axotomized (right) neuron. For each cell, the frequency (I), amplitude (J), rise time (K) and 
decay time (L) of sEPSCs was measured. These values were not different for intact compared to axotomized neurons from naive brain (N 
= 14 and 15 neurons, respectively).
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Figure 2: Comparison of intrinsic properties for intact (solid gray) and axotomized (diagonal black stripe) layer V pyramidal neurons. There 
is no signi icant difference on any measure for these two groups (t-tests, p > 0.05, N = 13 intact and 14 axotomized neurons for all measures 
except Slope F/I plot, AHP peak, and AHP Time to Peak, where only RS non-doublet cells were included in the analysis and N = 10 intact 
and 11 axotomized neurons).

If axotomy due to vibratome slicing does indeed alter 
cellular properties within the 6-8 hours of recording time after 
preparation, then these properties would be expected to differ 
between intact and vibratome-axotomized neurons in cortex 
from naïve mice. Slices prepared from YFP-h mice were used to 
test this idea. Here again we made careful coronal blocks using 
the brain slicer matrix. When done with brains from naïve mice, 
this results in the majority of the layer V pyramidal neurons 
within primary somatosensory cortex having both axons that 
can be followed to the subcortical white matter and dendrites 
that can be followed to their natural termination in superficial 
layers (Figure 1A). Near the surface of the living slice, some 
vibratome-axotomized neurons can also be seen (Figure 1B) 
in the same slices from which intact neurons are also present 

(Figure 1C). Axotomy can occur both near the soma (Figure 1D) 
and several hundred microns distant (Figure 1E).

Whole cell patch clamp recordings were made from 
axotomized and intact layer V pyramidal neurons from the same 
slice, using previously described methods [46,47]. Spontaneous 
(s-) EPSCs did not differ in frequency, amplitude, rise time 
nor decay time between intact and axotomized neurons from 
naïve brain (Figure 1 G-K, t-tests, p>0.05 for 14 intact and 
15 axotomized neurons). A series of hyperpolarizing and 
depolarizing step currents (400msec, -200 to 490 pA in 10 pA 
steps) was applied to assess intrinsic properties [33]. We have 
previously shown that the YFP-labeled population in these mice 
consists of some neurons with intrinsically-bursting (Figure IB) 
and some with regular-spiking (RS) firing patterns [33]. Here we 
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found that again both of these firing patterns were observed in 
axotomized as well as intact neurons (IB were: 2 of 15 intact and 
3 of 17 axotomized neurons). For other intrinsic measures, only 
the RS neurons were considered (in all cases t-tests were used 
to compare intact and axotomized groups with significance set 
to p<0.05). The lowest current to produce an action potential 
(rheobase) was not different for intact compared to axotomized 
neurons in slices from naïve animals (Figure 2A). The time to 
the first action potential at rheobase, and the input resistance 
were also not significantly different between these two groups 
(Figure 2B & 2C). 

A home-written java program was used to automatically 
detect every action potential, after-hyperpolarization (AHP) and 
depolarizing-after-potential (DAP) recorded from each neuron in 
the depolarization step series. Measures were then averaged for 
all action potentials or AHPs or DAPs recorded from that neuron 
(typically several hundred action potentials per neuron). Action 
potential threshold was measured as the interpolated membrane 
potential at which the first derivative of the membrane potential 
crossed the threshold of 10 V/s. Total adaptation was measured 
as the frequency of the first two action potentials divided by the 
frequency of the last two action potentials responding to the 
400msec long depolarizing step current. Late adaptation was 
measured as the frequency of the 4th and 5th action potential 
divided by the frequency of the last two action potentials. For 
both total and late adaptation measurements were only made 
in sweeps with 8 or more action potentials. Nine measures of 
action potential, AHP and DAP characteristics are shown (Figure 
2D-2L). None of these were significantly different in intact 
compared to vibratome-axotomized neurons recorded in slices 
from naïve brain. Also on more than 100 additional measures 
including action potential halfwidth, rise and decay time, there 
was no significant difference between these groups. When these 
same measures are examined in sham-injured YFP-h mice, there 
is also no significant difference between axotomized and intact 
neurons on any of these measures (Sun & Jacobs, unpublished 
observations). When these same synaptic and intrinsic property 
measures are examined in naïve cyclophilin-D knockout mice 
or separately in sham-injured cyclophilin-D knockout mice, 
there is also no difference between vibratome-axotomized and 
intact neurons (Sun & Jacobs, unpublished observations). These 
findings suggest that the abnormalities previously observed 
after trauma are not induced by the creation of brain slices.

Certainly any experimental preparation and even the act of 
observing will have some effect on the observations [48-50]. 
Under conditions of normal artificial cerebrospinal fluid (aCSF) 
that baths the slices, it is well known that neuronal activity is 
reduced compared to that observed in vivo even under anesthesia 
[51]. The best ionic composition of the slicing solution and 
aCSF, as well as the best chamber conditions for maintaining 
slice health continue to be sought [32,34]. While some axotomy 
in the preparation of cortical slices cannot be eliminated, the 

effects of it on the data can be reduced by making coronal slices, 
choosing sections that are posterior enough to have layer V 
pyramidal neurons with dendrites reaching the pia and axons 
reaching the white matter, and recording from neurons deep to 
the slice surface. Under all of these conditions, only after TBI are 
axotomized neurons observed deep to the slice surface. In the 
YFP-h mice, the axotomized and intact neurons appear in live 
slices similar to those observed in sections made after fixation 
of the intact brain (compare Figure 1 here to Figure 1 of Greer 
20116). We conclude that acute ex vivo slices are valid and 
useful for characterizing cellular physiological abnormalities in 
the study of TBI.
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