

Research Article
Volume 7 Issue 1 - April 2022
DOI: 10.19080/JOJMS.2022.07.555702

JOJ Material Sci

Copyright © All rights are reserved by Henaish AMA

Optical Properties of Anti-Reflective Coatings on P-N Silicon and their Response to Gamma-Irradiation

Abd El Wahab AA¹, Fayek SA¹, El Hossary FM², Hemada OM³, Mez T³, Hosni HM¹, Henaish AMA^{3,4*} and Abo El Kassem M²

¹Department of Solid State and Accelerator, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt

²Department of Physics, Sohag University, Egypt

³Department of Physics, Tanta University, Egypt

⁴Nanotech Center, Ural Federal University, Russia

Submitted: March 05, 2022; Published: April 11, 2022

*Corresponding author: Henaish AMA, Department of Physics, Tanta University, Egypt, Nanotech Center, Ural Federal University, Russia

Abstract

The dc-pulsed plasma magnetron sputtering was used for depositing TiO_2 , ZrO_2 , and Ti_{50} - Zr_{50} anti-reflection coating with thickness of 40 nm on p-n junction wafers and glass substrates. Furthermore, the antireflective properties of silicon nitride deposited elsewhere using plasma enhanced chemical vapor deposition (PECVD) were compared with those of metal oxide films. X-ray structural analysis reveals amorphous nature of the prepared films. The optical transmittance and reflectance measurements were investigated at room temperature in the wavelength range from 250 to 2500 nm. At long wavelengths, ZrO_2 has a slightly higher transparency than that of TiO_2 and Ti_{50} - Zr_{50} oxide. On the other hand, the transparency at short wavelengths has different behavior. At about 300nm, a sharp decrease in the transparency of the three coatings was found. On the other hand, reflectance measurements show a decrease in reflectivity at 600 nm for ZrO_2 and Ti_{50} - Zr_{50} oxide as compared to TiO_2 . Samples irradiated with gamma rays at a dose of 5 kGray show different behavior in reflectivity due to displacement damage in Si-based cells.

 $\textbf{Keywords:} \text{ p-n Si cell; Dc-pulsed plasma magnetron sputtering; Anti-reflection coatings (ARC); TiO_2; TrO_2; TiO_2; TiO_2; TrO_2; TiO_2; TrO_2; TrO_$

Abbreviations: PECVD: Plasma Enhanced Chemical Vapor Deposition; SCs: Solar Cells; ARC: Anti-Reflection Coatings

Introduction

Si-based solar cells (SCs) account for 90% of the current photovoltaic market. However, high production cost attitudes as an obstacle to their widespread performance [1]. Major industrial and researcher efforts are being made constantly to reduce the production cost while improving their power conversion efficiency. To do that, one of the main steps is to reduce reflection losses for solar cells, using anti-reflection coating (ARC) materials at the front surface of the cells, thereby coupling more sunlight into the cell to increase the photocurrent and efficiency [2].

Metal oxides nanostructure materials play an important role in the fields of optoelectronics and energy harvesting applications [3-5]. Oxides are a vital component of PV cells due to the various applications of oxides in PV cells. New oxide materials are being introduced for use in PV where numerous transition metal oxide

nanostructures with various morphologies have been synthesized using numerous techniques to achieve the requirements of the desired application [6-9]. Several highly transparent and high refractive index materials have been investigated as ARC in Si solar cells such as ZnS [10], CeO [11] ${\rm TiO_2}$ [12] ${\rm Ta_2O_5}$ [13], ZnO [14] and ${\rm ZrO_2}$ [15] either in a single layer or multiple layer coating. Besides, the choice of SiNx nowadays as a highly transparent ARC material is attributed to the large band gap energy (5.1 eV) with little absorption between 300 and 1150 nm where Si solar cells operate [16]. ARCs with uniform thickness and good optical properties are synthesized by different vacuum-based processes such as physical vapor deposition, reactive sputtering and chemical vapor deposition including plasma-enhanced chemical vapor deposition PECVD and atomic layer deposition [17].

Thin-film TiO₂ has the potential to reduce the production cost of Si-based solar cells, depending on the cell design. This material can serve multiple purposes as anti-reflective coating (ARC) film, oxide passivation compatible film and doping source for emitter diffusion [18]. Zirconium as an abundant terrestrial metal (74 million metric) [19] is sufficient to produce Si solar cells on a terawatt scale [20]. Optical properties of ZrO2 are considered as a suitable ARC on Si solar cells [21] where it has a large band gap of 6.1 eV [22] for cubic ZrO, and a refractive index value n=2 at 600 nm for dc-pulsed magnetron- sputtered ZrO2 films which similar to PECVD SiN, films [23]. Previously was also observed a similar trend in ZrO2 films prepared by spray deposition [24] and by pulsed laser deposition [25] and by Magnetron sputtering [26-29]. In this work, the structural and optical properties of three ARC films, namely TiO₂, ZrO₂ and Ti₅₀- Zr₅₀ oxide, were prepared by dc-pulsed magnetron sputtering to investigate the suitability of the prepared films for ARCs on p-n Si cells.

Experimental Procedure

Thin films preparation

Dc pulsed magnetron sputtering was used to coat a fixed thickness of 40nmthin films of ${\rm TiO_2}$, ${\rm ZrO_2}$ and ${\rm Ti}_{50}$ - ${\rm Zr}_{50}$ oxide on glass and Si (100) wafer p-n-junction. The films were grown by sputtering using ${\rm ZrO_2}$, ${\rm TiO_2}$ and ${\rm Ti}_{50}$ - ${\rm Zr}_{50}$ Oxide targets with purity of 99.99%, 50mm diameter and 3mm thickness. The glass substrates were ultrasonically cleaned with, methanol, acetone

and water. Si substrates were cleaned with diluted HF to remove native oxide from the surface. Sputtering is a type of physical vapor deposition technique that is widely used in both the laboratory and production. During sputtering an applied voltage is used to generate plasma that is confined close to a target material which ejects species that are then transferred to the substrate. Metal oxides can be grown directly from ceramic targets by sputter gas (argon), while metal targets can be sputtered using reactive oxygen together with the sputter gas. DC -pulsed magnetron sputtering can be used to deposit compact oxide coatings with relatively good properties at low temperatures. All details about magnetron sputtering can be found in separate reviews [30-32].

The schematic diagram of the dc–pulsed magnetron sputtering system is presented in Figure 1. Briefly, the system consists of a stainless-steel chamber with a diameter of 30 cm and was evacuated by turbo and rotary pumps to obtain a base pressure of 9×10^{-6} mbar. Argon gas (Ar) was introduced into the chamber to launch a total working gas pressure of 7×10^{-3} mbar which was measured by means of a manometer. The dc-pulsed power supply model: Pinnacle Plus pulsed was conducted to initiate the discharge. A powerful magnet was employed to ionize the target materials and direct it to settle on the substrate in the form of thin film. The selected substrates were fixed on a sample holder at a distance of 7cm from the target. The film thickness was adjusted to be around 40nm. The operating parameters of ${\rm ZrO}_2$, ${\rm TiO}_2$ and ${\rm Ti}_{50}{\rm -Zr}_{50}$ oxide of the coatings are listed in Table 1.

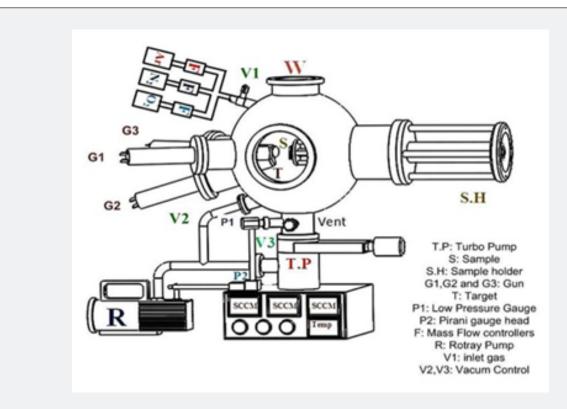


Figure 1: Schematic diagram of the dc-pulsed magnetron sputtering system [32].

Table 1: Operating parameters of various anti reflections coatings TiO₂, ZrO₂ and Ti₅₀ - Zr₅₀ oxide.

Target	TiO ₂	ZrO ₂	Ti ₅₀ -Zr ₅₀	
Base Pressure (mbar)	9 × 10 ⁻⁶			
Work Pressure (mbar)	7 × 10 ⁻³			
Gases	100%Ar	100%Ar	90%Ar + 10%O ₂	
Power (W)	150	400	120	
Frequency (KHz)	150			
Reverse Time (µsec)	2			
Distance between target and substrate (cm)	7			
Film Thickness (nm)	40	40	40	
Deposition Rate (nm/min)	3	0.5	1.6	

Thin-film characterization

The optical properties of deposited thin films were investigated from transmittance and reflectance measurements at room temperature in the wavelength range of 200-1000nm using Jasco V-670 UV/VIS spectrophotometer. The structural of the deposited films were determined using Bruker D8 Advance diffract meter operated at low angle incidence using 40 keV and 40 mA with Cu-K α_1 radiation (λ = 1.54056 Å).

Gamma rays irradiation effect

The output power of solar cells can be increased by improving the efficiency (η) and radiation resistance. In such a situation, radiation resistance is an important factor, because the continuous impact of high-energy particles damages the semiconductor lattice, degrades the performance of the cell, and thus limits its life. The MEGA gamma I irradiation facility in Egypt as type J-6500 was supplied by the Canadian Atomic Energy Corporation Ltd. at the National Center for Radiation Research and Technology in

Cairo, with a source of cobalt-60 used to irradiate samples with 5k grey [33,34].

Result and Discussion

XRD analysis

X-ray diffraction patterns of various antireflection coatings ${\rm TiO}_2$, ${\rm ZrO}_2$ and ${\rm Ti}_{50}$ - ${\rm Zr}_{50}$ oxide deposited on a glass substrate with a constant thickness t=40 nm demonstrated in Figure 2. It is obvious from the figure that the small diffraction peaks at 24° and 62° correspond to (1 0 1) and (2 0 0) diffraction planes for the anatase phase and another very small peak at around 45° corresponds to the (211) of the rutile phase for TiO2 antireflection coating. The X-ray diffraction patterns of ${\rm ZrO}_2$ displays very small diffraction peaks at 25.5° and 45.4° related to monoclinic structure oriented in (110) and (202) planes, respectively. The antireflection coating of ${\rm Ti}_{50}$ - ${\rm Zr}_{50}$ oxide has a completely amorphous structure.

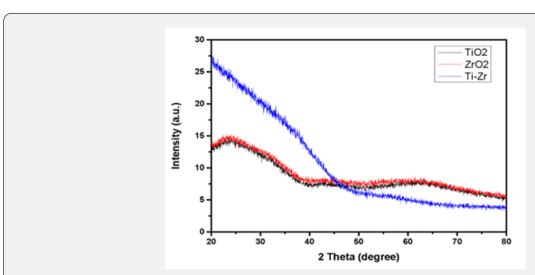


Figure 2: X-ray diffraction patterns of various antireflection coatings TiO₂, ZrO₂ and Ti50-Zr₅₀ oxide deposited on glass substrate with t=40nm.

Optical properties

The optical transmittance and reflectance of ${\rm TiO}_2$, ${\rm ZrO}_2$ and ${\rm Ti}_{50}\text{-}{\rm Zr}_{50}$ oxide on p-n silicon as a function of wavelength are shown in Figure 3. The appearance of interference fringes, which indicates that the films are homogeneous and flat, has been reported elsewhere [31]. The optical transmittance and reflectance depend on the type of ARCS and the category of deposition technique. In our case, the optical reflectance for

long wavelengths (>600nm) of different ARCs reduces close to zero. Moreover, the optical reflectance of $\rm ZrO_2$ is the lowest with respect to that of anti-reflectors $\rm TiO_2$ and $\rm Ti_{50}\text{-}Zr_{50}$ oxide. At long wavelengths, $\rm ZrO_2$ has slightly higher transmission compared to the others of anti-reflectors and p-n silicon. On the other hand, the transmission at short wavelengths has different behavior. At 300 nm it finds a decrease in transmission and starts to increase until the maximum transmission is at about 600 nm for $\rm Ty_{50}\text{-}Zr_{50}$ oxide.

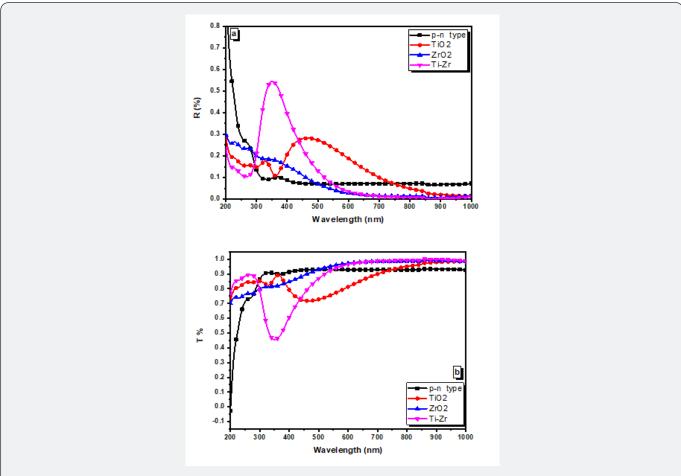


Figure 3: (a) Reflectivity and (b)Transmittance of various anti-reflection coating TiO2, ZrO_2 and Ti_{50} - Zr_{50} oxide on p-n junction at constant thickness t=40nm.

The optical absorption coefficient was calculated using the following equation:

$$\alpha = \frac{1}{d} \ln \frac{(1-R)^2}{T} \tag{1}$$

Where α is the optical absorbance and d is thickness of the film. The absorption coefficient α is related to the optical energy gap (E_o) and the frequency as given by Tauc equation:

$$(\alpha h \nu) = \beta (h \nu - Eg)^{m} \tag{2}$$

Where β is a constant that depends on the transition probability, h is the plank's constant, v is the photon frequency,

 $E_{\rm g}$ is the energy band gap. The optical energy gap is the minimum energy required to excite an electron from the valence band to the conduction band by an allowed optical transition. The value of the optical energy gap is usually determined by measuring the optical absorption coefficient as a function of the photon energy. The exponent (m) determines the type of direct and indirect transition that have values $1/2,\,2,$ respectively.

Figure 4a illustrates the absorption coefficient depending on wavelength for the entire study spectra. This figure reflects the absorption edge in the visible region. It can be seen that at the

wavelength up to 1000 nm, all metal oxides precipitating at the pn junction have almost the same values of absorption coefficient except for ${\rm Ti}_{50}\text{-}{\rm Zr}_{50}$ oxide at 300 to 500 nm and ${\rm TiO}_2$ at 400 to 650 nm. Figure 4b shows the variations of (αhv) 0.5 versus the photon energy (hv) for the prepared samples. The values of the energy band gap $({\rm E_g})$ and refractive indices are listed in Table 2. The values of ${\rm E_g}$ are higher than those of ${\rm SiN}_3$ at thickness of

75 nm. The increase in the energy band gap in the present work may be due to the up shift in the conduction band and downshift in the valence band leading to the band gap widening at 600nm. The results show that the band gap energy of ${\rm Ti}_{50}$ - ${\rm Zr}_{50}$ oxide is the highest values than other antireflective coating ${\rm TiO}_2$ and ${\rm ZrO}_2$. Moreover, the minimum energy gap value for ${\rm ZrO}_2$ was obtained.

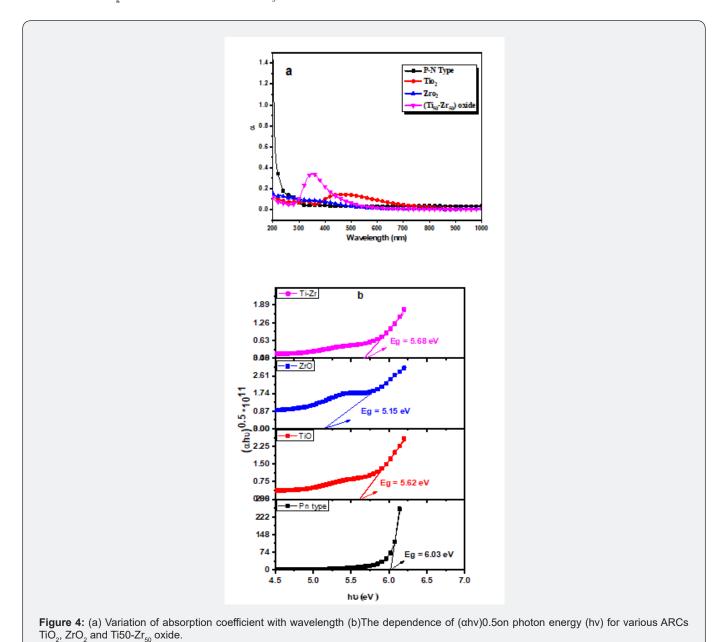
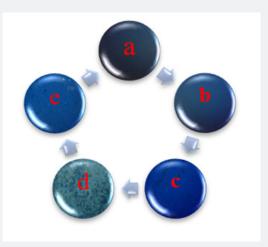


Figure 5 compares the color of SiN_x thin film prepared by PECVD (75nm thickness), ZrO_2 film prepared by spray deposition with the same thickness, and ZrO_2 , TiO_2 and $\mathrm{Ti}_{50}\text{-}\mathrm{Zr}_{50}$ oxide prepared by dc–pulsed magnetron sputtering (40 nm thickness) on p-n junction substrates. The figure shows almost the same blue color for all samples, indicating that they have almost the


same refractive index. The refractive index of the ARC is one of the most important parameters for antireflection on Si solar cells. The optimum for a single-layer ARC can be calculated using the following equation (3):

$$n_{ARC} = \sqrt{n_{Si} * n_{Gl}}$$
 (3)

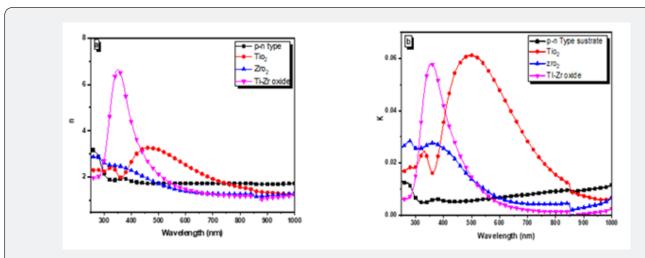
Where n_{si} and n_{cl} Glare refractive index of silicon and glass, respectively. Glass has a typical refractive index of 1.4 and the refractive index of Si is 3.9 at 600 nm, so the optimum refractive index for the ARC is 2.34 [23]. This suggests that the refractive index of SiN $_{x}$, 2.0, is slightly below the optimum value and a high-index material is preferred for the ARC in Si solar cells. Antireflection

relies on quarter-wavelength destructive interference. For a film of a transparent material with a refractive index n and thickness d, the wavelength λ at which zero reflection occurs is calculated by equation (4):

$$d = \lambda / 4n \tag{4}$$

Figure 5: Optical microscope photo (5X) of (a) 75-nm SiNx by PECVD, (b) 75-nm ZrO_2 by spray deposition, (c) 40- nm of ZrO_2 , (d) 40nm of ZrO_2 , and (e) photo 40 nm of ZrO_2 , oxide by dc-pulsed Magnetron Sputtering.

Where (λ) is the wavelength of the normal-incidence light in a vacuum. For solar cell applications, the refractive index and thickness of the ARC are designed to minimize the reflection at 600nm. This wavelength is close to the maximum power point of the solar spectrum.


The refractive index n as a function of λ can be calculated using the values k and R as fallow:

$$n = \frac{1+R}{1-R} + \left[\frac{4R}{(1-R)^2} - k^2\right]^{1/2}$$
 (5)

k, extinction coefficient, measures the energy fraction dissipated of the incident beam of photons as a result of absorption and scattering of the original beam per unit length of the material. The variation of k for a material as a function of the wavelength is calculated from:

$$k = \frac{\lambda \alpha(\lambda)}{2\pi}$$
; $\alpha(\lambda) = 2.303(\frac{A}{d})$ (6)

Where (λ) is the coefficient of absorption, λ is the wavelength of the incident beam, A is the absorbance and d is the thickness (Figure 6).

Figure 6: (a) The dependence of refractive index (n) and (b) the extinction coefficient (k) on wavelength for various (ARC) TiO₂, ZrO₂, Ti₅₀-Zr₅₀ oxide on the p-n junction.

It is observed that the k values increase with increasing wavelength up to 600 nm for ${\rm TiO_2}$ and up to 350 nm for ${\rm ZrO_2}$ and ${\rm Ti_{50}}\text{-}{\rm Zr_{50}}$ oxide and thus the k values are very sensitive to the antireflection coating (ARC) type in the visible region. However, at the longer wavelengths, all (ARC) ${\rm TiO_2}$, ${\rm ZrO_2}$ and ${\rm Ti_{50}}\text{-}{\rm Zr_{50}}$ oxide are

close. In this work, it was found that ${\rm TiO}_2$ has a refractive index of about 2.7 at t = 40 nm and ${\rm ZrO}_2$ and ${\rm Ti}_{50}$ - ${\rm Zr}_{50}$ oxide have a refractive index of about 1.95 and 2.19, respectively. Elsewhere, ${\rm SiN}_{\rm x}$ has a refractive index of 2.05 at t = 75 with different deposition techniques as shown in Table 2 [15].

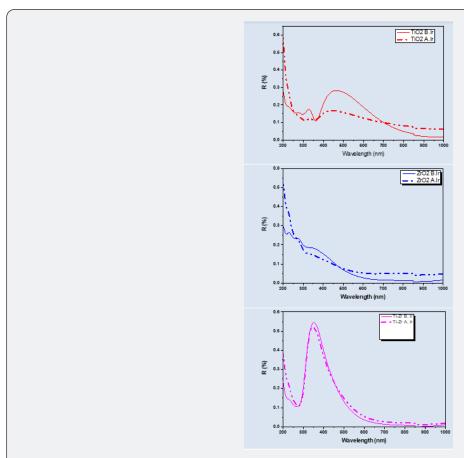
Table 2: The values of energy band gap E_q and refractive indices for various (ARC) TiO_2 , ZrO_2 , and Ti_{50} - Zr_{50} oxide on p-n junction.

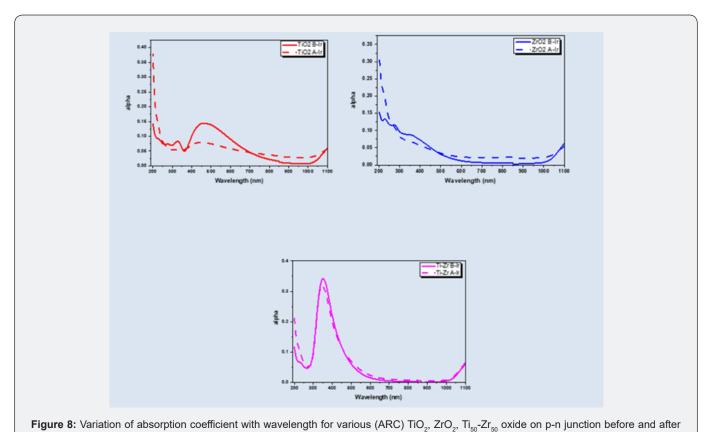
Type of ARCS	Energy band gap (ev)	Refractive index (N) at (600nm)
P-N type (substrate)	6.03	1.73
TiO ₂ at t=40nm	5.62	2.7
ZrO ₂ at t=40nm	5.15	1.95
Ti ₅₀ -Zr ₅₀ oxide at t=40nm	5.68	2.19
Commercial SiN, at t=75 nm	5.00	2.05

Effect of radiation on optical properties of (p-n) junction

In order to understand the behavior of samples with gamma-irradiation, one has to investigate the effect of gamma-radiation on solid material. Gamma-irradiation produces mainly ionization and excitation in the constituent atoms of the material. Moreover, it may also cause a small amount of atomic displacement depending

on its energy and the atomic number of the target atoms [33,35]. The effect of Υ – radiation on optical properties of Si p-n junction cells coated with ${\rm TiO_2}$, ${\rm ZrO_2}$ and ${\rm T_{50}}$ - ${\rm Zr_{50}}$ oxide antireflection films with 40nm has been investigated at an irradiation dose of 5K Grey. The Optical reflectivity of the studied antireflection coatings before and after irradiation with dose 5K Grey is shown in Figure 7.




Figure 7: Reflectivity of various anti-reflection coating TiO₂, ZrO₂, Ti_{so}-Zr_{so} oxide on p-n silicon junction before and after Y- irradiation with 5kGv.

It can be observed that there is a noticeable change in reflectivity of the samples after irradiation as compared with un-irradiated ones. For irradiated ${\rm TiO}_2$ films, the decrease in reflectivity lies in the wavelength range from 400-700nm while the relative increase in its value from 700-1000 nm occurs for irradiated lies in the wavelength range from 300 to700 films. For irradiated ${\rm ZrO}_2$, the decrease in reflectivity lies only in the wavelength range from 275-475 nm and for irradiated ${\rm Ti}_{50}$ - ${\rm Zr}_{50}$ oxide has slightly difference with that of un-irradiated one. Based on the former notion, one has to discuss this effect on the evaporated films and the Si base as well. For anti-reflection coating films, Y-radiation may have a minor effect on their optical properties because of the following reasons

- **a)** The film thickness is ultra-thin and therefore radiation damage is minimal.
- **b)** The amorphous nature of the evaporating films may cause the radiation effect to be temporary with no permanent damage.

Therefore, the major effect of gamma-irradiation on samples reflectivity comes from its impact on the Si base. In other words, the change of reflectivity with irradiation may be attributed to active vacancies produced in the Si base by gamma radiation, where electrons are trapped at these vacancies. Figure 8 show

the variation of absorption coefficient with wavelength for various (ARC) TiO2, ZrO2 and Ti50-Zr50 oxide on p-n silicon after gamma irradiation with 5KGrey. It can be observed that the intensity of the absorption decreases after irradiation by the ratio 2-4% at 600nm for TiO₂. In addition, a noticeable change in the optical transitions between the bound states of the trapped electrons coupled with the vibration of the host Si crystal leads to vibrational absorption and emission as compared non-irradiated ones [34] and hence reduction in reflectivity over the certain optical range is expected to occur and vice versa. The values of energy band gap E_g increase after irradiation due to the increase of structural defects and the decrease at 600nm due to the damage of the substrate under the effect of gamma irradiation. The gamma irradiation induces changes in the refractive index over a wide range of wavelengths. The refractive index tends to be greater in the visible range (600nm) compared to the values measured in the other wavelengths. The induced refractive index increases after irradiation when moving toward the infrared range of the spectra. The gamma irradiation induces disordering of p-n junction, which can lead to broadening and spectral shift in the fundamental IR absorption band. The absorption modification results change in the refractive index of the materials. The values of energy band gap refractive indices before and after gamma irradiation with 5KGray are listed in Table 3.

gamma - irradiation with dose 5kGy.

Table 3: The values of energy band gap (E_n) and refractive indices before and after gamma irradiation with 5kGy.

Type of ARCS	Energy band gap (ev) before irradiation	Energy band gap (ev) E _g after irradiation	Refractive index (n) before irradiation at (600nm)	Refractive index (n) after irradiation (600nm)
TiO ₂ at t=40nm	5.62	5.8	2.7	2.4
ZrO ₂ at t=40nm	5.15	5.43	1.95	1.8
Ti ₅₀ -Zr ₅₀ oxide at t=40nm	5.68	5.5	2.19	1.95
Commercial SiN _x at t=75nm	5	4.7	2.05	-

Conclusion

The possibility of using various metal oxides prepared by dc pulsed magnetron sputtering such as TiO2, ZrO2 and Ti50-Zr50 oxide as a coating for n-p Si junction has been studied. The structural and optical properties of dc magnetron sputtering TiO2, ZrO2 and Ti50-Zr₅₀ oxide were studied and compared with commercial PECVD SiN_x. The X-ray diffraction patterns of the antireflection TiO₂, ZrO₂ and Ti₅₀-Zr₅₀ oxide show a completely amorphous structure. The optical reflectance for ZrO_2 and Ti_{50} - Zr_{50} oxide drops to nearly zero in the range from 600 to 1000 and even lower than n-p Si junction alone. The decrease in reflectivity (10%) of the various coatings at 600 nm is similar to that of SiN_x. The results showed that the TiO2, ZrO2 and Ti50-Zr50 oxide has a refractive index of about 2.00 at 600 nm which is similar to that of SiN_x. The energy gap value and refractive indices of coated n-p Si increase slightly with that of uncoated substrate. Samples irradiated with gamma rays at a dose of 5 k Gray show different behavior in reflectivity due to displacement damage in Si-based cells. The results show that ZrO₂ thin films prepared by dc pulsed magnetron sputtering can be used as anti-reflective coatings for solar cells and other siliconbased photosensitive devices.

References

- (2018) Fraunhofer Institute for Solar Energy Systems, Photovoltaic Report
- Diop MM, Diaw A, Mbengue N, Ba O, Diagne M, et al. (2018) Optimization and Modeling of Antireflective Layers for Silicon Solar Cells: In Search of Optimal Materials. Mater Sci Appl 9(8): 705-722.
- 3. (2002) P Engineering, NS Wales, Novel Uses of Titanium Dioxide for Silicon Solar Cells, Electr Eng.
- Gangopadhyay U (2013) Efficiency Enhancement of Solar Cell by Introduction of Cerium Oxide along with Silicon Nitride. Int J Renew Sustain Energy 2(2): 46-50.
- Hocine D, Belkaid MS, Pasquinelli M, Escoubas L, Simon JJ, et al. (2013) Improved efficiency of multicrystalline silicon solar cells by TiO₂ antireflection coatings derived by APCVD process. Mater Sci Semicond Process 16(1): 113-117.
- Mohd Abdah MAA, Azman NHN, Kulandaivalu S, Sulaiman Y (2020) Review of the use of transition-metal-oxide and conducting polymerbased fibres for high-performance supercapacitors. Mater Des 186: 108199.
- Akbari A, Amini M, Tarassoli A, Eftekhari Sis B, Ghasemian N, et al. (2018) Transition metal oxide nanoparticles as efficient catalysts in oxidation reactions. Nano-Structures and Nano-Objects 14: 19-48.

- Sun XW, Kwok HS (1999) Optical properties of epitaxially grown zinc oxide films on sapphire by pulsed laser deposition. J Appl Phys 86(1): 408-411.
- Ghosh K, Gupta P, Pandey RK (2020) Optical properties tuning by sodium and magnesium co-doping in ZnO thin films for optoelectronic applications. Mater Today Proc 28: 177–181.
- 10. Gangopadhyay U, Kim K, Mangalaraj D, Yi J (2004) Low-cost CBD ZnS antireflection coating on large area commercial mono-crystalline silicon solar cells. Appl Surf Sci 230(1): 364-370.
- 11. Gangopadhyay U, Ray S, Panda E, Jana S, Das S (2013) Efficiency enhancement of solar cell by introduction of cerium oxide along with silicon nitride. International Journal of Renewable and Sustainable Energy 2(2): 46-50.
- 12. Hocine D, Belkaid MS, Pasquinelli M, Escoubas L, Simon JJ, et al. (2013) Improved efficiency of multicrystalline silicon solar cells by ${\rm TiO}_2$ antireflection coatings derived by APCVD process. Materials Science in Semiconductor Processing 16(1): 113-117.
- 13. Rubio F, Denis J, Albella JM, Martinez DJM (1982) Sputtered ${\rm Ta_2O_5}$ antireflection coatings for silicon solar cells. Thin Solid Films 90(4): 405-408.
- 14. Aurang P, Demircioglu O, Es F, Turan R, Unalan HE (2013) ZnO nanorods as antireflective coatings for industrial scale single crystalline silicon solar cells. Journal of the American Ceramic Society 96(4): 1253-1257.
- 15. Shin WJ, Huang WH, Tao M (2019) Low-cost spray-deposited ${\rm ZrO}_2$ for antireflection in Si solar cells. Mater Chem Phys 230: 37-43.
- 16. Verlaan V, Verkerk AD, Arnoldbik WM, Bakker R, Houweling ZS, et al. (2009) The effect of composition on the bond structure and refractive index of silicon nitride deposited by HWCVD and PECVD. Thin Solid Films 517(12): 3499-3502.
- Krogman KC, Druffel T, Sunkara MK (2005) Anti-reflective optical coatings incorporating nanoparticles. Nanotechnology 16(7): S338-343.
- 18. Witit-anun N, Kasemanankul P, Chaiyakun S, Limsuwan P (2009) Structures and optical properties of TiO2 thin films deposited on unheated substrate by DC reactive magnetron sputtering, Kasetsart. J Nat Sci 43(5): 340-346.
- 19. French RH, Glass SJ, Ohuchi FS, Xu YN, Ching WY (1994) Experimental and theoretical determination of the electronic structure and optical properties of three phases of ZrO₂. Phys Rev B 49(8): 5133-5142.
- Tao M (2014) Terawatt Solar Photovoltaics Roadblocks and Opportunities. London: Springer.
- 21. Winchell AN, Winchell H (1964) The microscopical characters of artificial inorganic solid substances: Optical properties of artificial minerals pp. 439.
- 22. Cho HJ, Hwangbo CK (1996) Optical inhomogeneity and microstructure of ${\rm ZrO_2}$ thin films prepared by ion-assisted deposition. Appl Opt 35(28): 5545-5552.

- 23. Martin N, Rousselot C, Rondot D, Palmino F, Mercier R (1997) Microstructure modification of amorphous titanium oxide thin films during annealing treatment. Thin Solid Films 300(1-2): 113-121.
- 24. Shin WJ, Wang L, Tao M (2017) Low-cost spray deposited ${\rm ZrO}_2$ for passivation and antireflection on p-type Si. IEEE 44th Photovolt. Spec Conf PVSC pp. 3435-3438.
- Balakrishnan G, Thanigaiarul K, Sudhakara P, Song JI (2013) Microstructural and optical properties of nanocrystalline undoped zirconia thin films prepared by pulsed laser deposition. Appl Phys A Mater Sci Process 110: 427-432.
- 26. Suhail MH, Moha RG, Mohan S (1992) DC reactive magnetron sputtering of titanium structural and optical characterization of ${\rm TiO_2}$ films. J Appl Phy 71(3).
- 27. Sahu BB, Jin SB, Xiang PJ, Kim JB, Han JG (2018) Effect of inductively coupled plasma and plasma parameters on magnetron sputtered Al-Doped ZnO highly conductive thin films at low-temperature. J Appl Phys 123(20).
- 28. Sahu BB, Lee MW, Long W, Han JG (2020) Role of plasma parameters on the characteristic's properties of flexible transparent ITO films deposited by 3D facing and planar facing magnetron sources. AIP Adv 10(10).

- Misra P, Ganeshan V, Agrawal N (2017) Low temperature deposition of highly transparent and conducting Al-doped ZnO films by RF magnetron sputtering. J Alloys Compd 725: 60-68.
- 30. (2018) US Geological Survey, Mineral Commodity Summary.
- 31. Pearton SJ, Norton DP, Heo YW, Steiner T (2005) Recent progress in processing and properties of ZnO. Prog Mater Sci 50(3): 293-340.
- 32. El Hossary FM, El Rahman AMA, Raaif M, Qu S, Zhao J, et al. (2018) Effect of DC-pulsed magnetron sputtering power on structural, tribological and biocompatibility of Ti–Zr–N thin film. Appl Phys A Mater Sci Process 124(1): 1-12.
- 33. Hughes AE, Polley D (1975) Real Solids and Radiation. Wykeham Publications, London, UK.
- 34. Fox M (2001) Optical properties of solids. Oxford University Press Inc. New York, UK.
- Billington DS, Crawford JH (1961) Radiation Damage in Solids. Princeton University Press, Princeton, NJ.

This work is licensed under Creative Commons Attribution 4.0 License DOI: 10.19080/JOJMS.2022.07.555702

Your next submission with JuniperPublishers will reach you the below assets

- · Quality Editorial service
- · Swift Peer Review
- · Reprints availability
- E-prints Service
- Manuscript Podcast for convenient understanding
- · Global attainment for your research
- Manuscript accessibility in different formats

(Pdf, E-pub, Full Text, Audio)

Unceasing customer service

Track the below URL for one-step submission

https://juniperpublishers.com/submit-manuscript.php