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Abstract

Trace concentrations of hazardous inorganic 
anionic species such as arsenate, phosphate, antimonite, selenite and fluoride can be
effectively and selectively removed from water by means
 of adsorption using the gels prepared from biomass wastes such as orange juice
residue loaded with multi-valent metal ions such as 
zirconium (IV). The adsorption capacities of these gels for arsenic are much higher than
other adsorbents reported in literatures.





Introduction

In recent years, pollution of water by various toxic materials
has become serious all over the world especially in developing
countries, caused by the development of industries in these
countries. Among toxic materials, although mercury and lead
are the most toxic, arsenic and fluorine are also toxic. Especially,
pollution of underground water by arsenic in Bangladesh and
India is well known. Although mercury and lead exist as cationic
species in aquatic environments, majority of toxic inorganic
materials exist as anionic species. For example, arsenic (III
and V) exists oxo-anions such as arsenite (AsO33-) and arsenate
(AsO43-), respectively. To avoid the pollution by these toxic
elements, severe standards are required for effluents from
industries in each country. For example, the typical standards in
Japan are as follows; chromium (VI): 0.5, selenium: 0.1, arsenic:
0.1, flourine: 8 (unit; mg/dm3). To clear these standards, various
techniques have been developed to date and some of them have
been commercialized. The typical techniques are precipitation,
electrochemical treatments, Donnan dialysis, ion exchange
and adsorption. However, these conventional techniques are
suffering from some drawbacks such as poor selectivity, high
operation costs and so forth.


These toxic anionic species exist in trace concentrations
in water together with excess concentrations of non-toxic
anionic species such as carbonate and sulfate. Consequently, it
is important to selectively remove these toxic anionic species
over the non-toxic anionic species; i.e. the selectivity to the
anionic species in question over other anionic species is the most
important. Among the above-mentioned techniques, adsorption technique including ion exchange is the most suitable for
removing trace concentration of hazardous materials. However,
the majority of adsorbents suffer from low selectivity to the
species in question. It is difficult to selectively adsorb the abovementioned
anionic species using usual anion exchange materials
such as commercially available anion exchange resins according
to the well known Hoffmeister’s selectivity series among anionic
species [1]. For the adsorptive removal of these anionic species,
the use of cation exchange materials such as strongly acidic cation
exchange resins loaded with high-valent metal cations such as
ferric ions exhibiting a high affinity for the anionic species in
question has been proposed [2]. However, ion exchange resins
suffer from another problem in case they are used for solutions
containing fine solid particles or solid suspension; that is; these
fine solid particles easily enter into micro-pores of ion exchange
resins and clog the pores, impeding the smooth operation of
adsorption. 


We hit upon an idea to use some biomass wastes instead of
synthetic ion exchange resins to effectively and selectively adsorb
hazardous anionic species of arsenic [3,4], phosphorus [5,6],
antimony [7], selenium [8] and fluorine [9-12]. The candidate
biomass wastes are orange and apple juice residues and seaweeds
wastes containing large amounts of functional groups
of carboxylic acid; i.e. orange and apple juice residues contain
pectic acid while sea-weeds contain alginic acid, the chemical
structures of which are shown in figure 1. In this review
article, we introduce the adsorptive removal of arsenic using the
adsorption gel of orange juice residue as a typical example.
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scheme 1:  Chemical structures of pectic acid (left) and alginic acid (right).





Mechanism of adsorption of toxic anionic species on
metal-loaded biomass wastes


Cationic metal ions such as lead (II) and iron (III) are
adsorbed on pectic acid and alginic acid by cation exchange
reaction forming stable five-membered chelates as shown in
Scheme 2; i.e. these polysaccharides function as natural chelating
polymeric materials. In the case of adsorption of divalent metal
ions such as copper (II) and lead (II), all of 2 positive charges
of these metal ions may be neutralized by 2 carboxylic groups
of these polysaccharides. However, in the case of trivalent and
tetravalent metal ions such as ferric ion and zirconium ion
which exhibit high affinity for the above-mentioned hazardous
anionic species, it is difficult for all of these positive charges to
be neutralized by the carboxylic acid functional groups due to
strong steric hindrance of these polymeric materials [13-20].
The positive charges which are not neutralized by the carboxylic
acid functional groups are neutralized by hydroxyl ions in water
and these hydroxyl ions are substituted by the hazardous anionic
species (figure 2).
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Figure 2: Mechanisms of adsorption of divalent metal ions
such as lead (II) ion and ferric ion on pectic acid by cation
exchange reaction and adsorption of hazardous anionic species
such as arsenate on thus adsorbed ferric ion.





Among the tested multi-valent metal ions loaded on orange
juice residue, zirconium (IV) ion was found to be the most suitable
metal ion to absorb the above-mentioned anionic species. As
a typical example,table 1 shows the comparison of maximum
adsorption capacities for arsenic (V and III) by zirconium (IV)-
loaded orange juice residue gel and by other adsorbents reported
in literatures. As can be seen from this table, the zirconium (IV)-
loaded orange juice residue gel exhibit much higher adsorption
than other adsorbents including the zirconium (IV)-loaded
synthetic chelating resin. It was also verified that the adsorption
gels of orange juice residue and waste sea-weed can effectively
remove trace concentration of arsenic from actual acid mine
drainage [21].




table 1: Concentration of arsenic from actual acid mine drainage.
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Conclusion

Adsorption gels effective for removing trace concentration of
hazardous anionic species such as arsenate, arsenite, phosphate
and fluoride were prepared from orange juice residue and seaweed
wastes in a simple manner. The adsorption capacities
of these adsorption gels were higher than other adsorbents
so far reported. It can be expected that these adsorbents are successfully applied for actual waste solutions containing these hazardous anionic species.
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