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Introduction

This work is aiming to prove the feasibility and the advantages 
of using the classical and novel concepts and numerical tools of  

 
the chemical and biochemical engineering (CBE) to develop 
MSDKM of the extended cell-scale CCM-based (central carbon 

Summary 

Biologically catalyzed reactions (with enzymes, or living cell cultures) can successfully replace complex chemical syntheses, being more 
selective, by using milder reaction conditions, and generating less waste. As proved by the recent literature, the developed in-silico (math-model-
based) numerical analysis of such biochemical/biological systems turned out to be a beneficial tool to (i) off-line determine optimal operating 
policies of complex multi-enzymatic or biological reactors with a higher precision and predictability, or (ii) to design GMO (genetically modified 
micro-organisms) of desired characteristics for various uses. This work presents a holistic ‘closed loop’ approach that facilitate the control 
of the in vitro through the in silico development of dynamic models for living cell systems, by deriving deterministic modular structured cell 
kinetic models (MSDKM) (with continuous variables, and based on cellular metabolic reaction mechanisms). The ever-increasing availability 
of experimental (qualitative and quantitative) information about the tremendous complexity of cell metabolic processes, stored in large bio-
omics databanks (including genomic, proteomic, metabolomic, fluxomic cell data for various micro-organisms), but also about the bioreactors’ 
operation necessitates the advancement of a systematic methodology to organise and utilise these data. 

Keywords: Biochemical engineering concepts applied in bioinformatics; Deterministic modular structured cell kinetic model (MSDKM); 
Hybrid structured modular dynamic (kinetic) models (HSMDM);Whole cell variable cell volume (WCVV) modelling framework; Whole cell 
constant cell volume (WCCV) modelling framework; Individual gene expression regulatory module (GERM); Genetic regulatory circuits (GRC), 
or networks (GRN); Chemical and biochemical engineering principles (CBE), Rules of the control theory of nonlinear systems (NSCT).
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metabolism), and of genetic regulatory circuits (GRC) / networks 
(GRN). These extended kinetic models will be further linked to 
those of the bioreactor dynamic models (including macro-scale 
state variables), thus resulting hybrid structured modular dynamic 
(kinetic) models (HSMDM) proved to successfully solve more 
accurately difficult bioengineering problems. 

In such HSMDM, the cell-scale model part (including nano-
level state variables) is linked to the biological reactor macro-
scale state variables for improving the both model prediction 
quality and its validity range. By contrast, the current (classical/
default) approach in biochemical engineering and bioengineering 
practice for solving design, optimization and control problems 
based on the math models of industrial biological reactors is to 
use unstructured Monod (for cell culture reactor) or Michaelis-
Menten (if only enzymatic reactions are retained) global kinetic 
models by ignoring detailed representations of metabolic cellular 
processes. The applied engineering rules to develop MSDKM and 
HSMDM dynamic math models presented in the 1-st and 2-nd 
parts of this work [14] are similar to those used in the CBE, and in 
the control theory of nonlinear systems (NSCT). 

This 1-st part of the work presents some general concepts of 
CBE, of the NSCT, and of Bioinformatics used to derive MSDKM 
and HSMDM models, with continuous variables and based 
on cellular metabolic reaction mechanisms. Such extended 
structured cell math (kinetic) models consider, with a degree of 
detail suitable to the each approached case study, the cellular 
key-metabolic reactions and the cell key-species dynamics. These 
structured models can satisfactorily represent the key steps of the 
CCM at a cell scale, by also can include GRC-s responsible for the 
CCM syntheses regulation, besides reaction modules responsible 
for the synthesis of cellular metabolites of interest for the 
industrial biosynthesis. Special attention is paid to the conceptual 
and numerical rules used to construct various individual GERM-s 
kinetic models, but also various GRC-s (e.g. toggle-switch, 
amplitude filters, modified operons, etc.) modular kinetic models 
from linking individual GERM-s. 

The 2-nd part of the work [14] will briefly reviews the ’whole-
cell of variable-volume’ (WCVV) modelling framework introduced 
and promoted by the author in previous works. Also, this 2-nd part 
[14] points-out the features of the deterministic WCVV models, 
and its advantages when simulating GERM-s, and GRC-s dynamics 
in living cells, by contrast to the classical (default) WCCV (whole-
cell constant-volume modelling framework); P.I.-s of GERM-s; 
rules to link GERM-s when modelling GRC-s, and other related 
theoretical aspects necessary to construct MSDKM and HSMDM 
models.

The 3&4 parts [14] of the work proves, by means of several 
demonstrative relevant examples the superiority of using 
MSDKM and HSMDM dynamic math models when solving 

various bioengineering problems (i) to in-silico off-line optimize 
the operating policy of various types of bioreactors, and (ii) to in-
silico design/check some GMO-s of industrial use able to improve 
the performances of several bioprocess/bioreactors.

By contrast, by considering only the macroscopic key-
variables of the process (biomass, substrate, and product 
concentrations), the unstructured (apparent, global) math models 
do not adequately reflect the metabolic changes of the bioreactor 
biomass, being inadequate to accurately predict the cellular 
response to the medium disturbances through the self-regulated 
cellular metabolism. These classical global/ unstructured dynamic 
models may be satisfactory for an approximate modeling of the 
biological process, but not for modeling of cellular metabolic 
processes, and they can not make any correlation between 
the bioreactor operation and the continuous adaptation of the 
biomass metabolism to the variable conditions of the bioreactor. 
Even worst, as proved by the author in previous papers, such 
global models may lead to biased and distorted conclusions about 
the GERM’s performances, thus making difficult the modular 
constructions of GRC-s by linking individual GERM-s. 

In the last decades, there has been a tendency to replace the 
complex processes of fine chemical synthesis, highly energy-
consuming and generating large amounts of toxic waste, with 
biosynthesis processes (using isolated and purified enzymes, 
or cell cultures as bio-catalysts). The motivation is given by the 
multiple advantages offered by enzymatic processes (Figure 
1): i) very high selectivity; ii) very high conversion; iii) does not 
generate toxic by-products; iv) very mild reaction conditions, 
easy to achieve without high costs (low temperatures of 20-60°C, 
normal pressure, pH within controllable limits). Thus, in recent 
years, a significant number of enzymatic or biological industrial 
processes have been reported [1-4] in order to obtain chemical 
products/derivatives in the fine organic synthesis industry, in the 
pharmaceutical industry, in the food industry or in the detergent 
industry, by using various bioreactors with cell or enzyme 
cultures [1,4]. Among these new processes are the production 
of derivatives of monosaccharides, organic acids, alcohols, 
amino acids, etc., using mono- or multi-enzymatic reactors, or 
bioreactors with cell cultures used in the production of yeast, food 
additives, recombinant proteins (enzymes, vaccines), biopolymers 
[1,2,5]. The development of a sustainable biological process must 
consider several aspects related to the characteristics of the 
biocatalyst, the integration of the process and the minimization 
of costs, satisfying economic, environmental / safety and social 
objectives [6-8].

The current approach in biochemical engineering and 
bioengineering practice for solving design, optimization and 
control problems based on the math models of industrial biological 
reactors is to use unstructured Monod (for cell culture reactor) or 
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Michaelis-Menten (if only enzymatic reactions are retained) by 
ignoring detailed representations of metabolic cellular processes. 
The engineering rules applied are similar to those used in the 
chemical and biochemical engineering (CBE), and in the control 
theory of nonlinear systems (NSCT). However, by considering only 
the macroscopic key-variables of the process (biomass, substrate, 
and product concentrations), these unstructured (apparent) 
math models do not adequately reflect the metabolic changes of 

the bioreactor biomass, being inadequate to accurately predict 
the cellular response to the medium disturbances through the 
self-regulated cellular metabolism. These global dynamic models 
may be satisfactory for an approximate modeling of the biological 
process, but not for modeling of cellular metabolic processes, and 
they casn not make any correlation between bioreactor operation 
and the continuous adaptation of biomass metabolism to the 
variable conditions of the bioreactor.

Figure1: Advantages of biosynthesis processes (fermentations using cell cultures in bioreactors) and enzymatic syntheses 
compared to the classic chemical catalytic processes. [Bottom-right] Production cost structure in the case of biosyntheses with free 
enzyme (or biomass) compared to those with immobilized enzyme (or biomass). Adapted from [164,14].

The current trend to more accurately solve such engineering 
problems is to use deterministic modular structured cell kinetic 
models (MSDKM), with continuous variables, and based on 
cellular metabolic reaction mechanisms, that consider, with a 
degree of detail suitable to the each approached case study, the 
cellular metabolic reactions and the cell key-species dynamics. 
These structured models can satisfactorily represent the key 
steps of the central carbon metabolism (CCM) at a cell scale, by 
also including reaction modules responsible for the synthesis of 
cellular metabolites of interest for the industrial biosynthesis. As 
proved ny Maria [11-14,32], and Yang et al. [175], the modular 
structured kinetic models can reproduce the dynamics of complex 
metabolic syntheses inside living cells. This is why, the modular 
GRC and CCM dynamic models, of an adequate mathematical 
representation, seem to be the most comprehensive mean for 
a rational design of the regulatory GRC with desired behaviour 

[110]. The same MSDKM can satisfactorily simulate, on a 
deterministic basis, the self-regulation of cell metabolism for its 
rapid adaptation to the changing bioreactor reaction environment, 
by means of complex „genetic regulatory circuits” (GRC-s), which 
include chains of individual „gene expression regulatory modules” 
(GERM-s).

In this context, this work shortly review the essential CBE 
principles and rules used to elaborate MSDKM, but also the so-
called ’’Hybrid structured modular dynamic (kinetic) models” 
(HSMDM) [9,10] that combine the characteristics of the cellular 
metabolic process involving species participating to the essential 
reaction modules of CCM at a nano-scopic level, with the macro-
scopic processes involving the state variables of the industrial 
bioreactor. In this way, more accurate predictions are obtained 
both for the dynamics of the biological process at the cellular 
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level, and for the dynamics of the operating parameters of the 
analyzed industrial bioreactor. The immediate applications 
of these MSDKM and HSMDM refer to (i) the more precise 
determination of the optimal operating policy of an industrial 
bioreactor, and (ii) facilitates, by means of an in-silico numerical 
analysis, determination of GMO-s with a cell metabolism of 
desired characteristics. 

In this first part of this work, the general concepts to construct 
MSDKM models with continuous variables are presented by 
using CBE and NSCT principles/concepts and rules. Special 
attention is paid to the conceptual and numerical rules used to 
build-up modular CCM kinetic models, in direct connection to 
various individual GERM-s kinetic models, but also to various 
GRC-s (e.g. toggle-switch, amplitude filters, operons expression, 
etc.) modular kinetic models by linking a couple of GERM-s. To 
do such a complex modelling work in a consistent way, this part 
also briefly reviews the novel „Whole cell variable cell volume” 
(WCVV) modelling framework introduced and promoted by 
Maria [11-18], as an essential modelling instrument to develop 
more realistic and precise MSDKM-s and HSMDM-s. Besides 
presenting the WCVV deterministic model hypotheses, this paper 
points-out its advantages when simulating GERM-s, and GRC-s 
dynamics in living cells, in a holistic approach, by contrast to the 
classical (default) WCCV (whole-cell constant-volume modelling 
framework). The WCVV discussion is extended by briefly 
reviewing the P.I.-s of GERM-s; and the rules to link GERM-s when 
modelling/build-up GRC-s.

However, industrial bioprocesses still have a limited spread 
due to the high costs of enzyme/biomass isolation and stabilization 
on a suitable support, as well as its high sensitivity in relation to 
the operating conditions, the rather low reproducibility of the 
biological process due to biomass changes from one cell cycle 
to another, and of the difficult controllability of the bioreactor. 
However, many of these drawbacks can be overcome by an 
efficient immobilization of the biomass on suitable supports, by 
using suitable GMO-s with superior catalytic activity, and/or by 
optimizing the working conditions and the operation mode of the 
selected biological reactor, by using an advanced off-line in-silico 
analysis of the engineering part of bioprocess development based 
on effective math models and numerical algorithms. This last 
alternative is briefly reviewed in the 2-nd part of the work.

As proved in the literature, the in-silico (math/kinetic model-
based) numerical analysis of biochemical or biological processes 
by using MSDKM or HSMDM models are proved to be not only 
an essential but also an extremely beneficial tool for engineering 
evaluations aiming (i) to determine with a higher accuracy the 
optimal operating policies of complex multi-enzymatic reactors, 
[5,19-23], or of bioreactors including the biomass adaptation to 
the variable bioreactor environment over hundreds of cell cycles 
[2,9,24-26], or even (ii) to easier and quickly simulate and analyse 
the performances/ characteristics of various GMO-s alternatives, 

by using the “metabolic flux analysis” (MFA), [26-30], together 
with the gene-knock-out technique) [9,10,14,30-32].

Biochemical Reactor Case

To solve engineering problems for this case, the trend is to 
use complex multi-enzymatic systems which successfully replace 
complex chemical syntheses, by using milder reaction conditions, 
and generating less waste. Progresses in enzymes immobilization, 
and genetic engineering lead to prolonging the biocatalyst life and 
efficiency [169-171]. 

Even if the multi-enzymatic systems are advantageous, the 
engineering part used to optimize such a complex process is not 
an easy task because it must account for the interacting enzymatic 
reactions, enzymes deactivation kinetics (if significant), multiple 
and often opposed optimization objectives, technological 
constraints, and uncertainties coming from multiple sources 
(model / constraints inaccuracies, disturbances in the control 
variables), and a highly nonlinear process dynamics [2,19,20,22-
24,33-35]. All these parametric/model/data uncertainties require 
updating (with a certain frequency) the enzymatic process model, 
the optimal operating policies of the reactor being determined by 
using rather deterministic (model-based) optimization rules [36]. 
Multi-objective criteria, including economic benefits, operating 
and materials costs, product quality, etc., are used to off-line, 
or to on-line derive feasible optimal operating/control policies 
for various bioreactor types [34] by using specific numerical 
algorithms [20,22,23,25,32,35,37-39].

Biological reactor case 

In thw last decades, the trend is to use biological processes 
conducted in complex biological reactors to successfully replace 
complex chemical syntheses, by using milder reaction conditions, 
and generating less waste. Progresses in biomass immobilization, 
and genetic engineering lead to prolonging the biocatalyst life and 
efficiency [172]. 

To solve engineering problems for this case, development of 
extended cell-scale CCM / GRC-s structured MSDKM or HSMDM 
kinetic models on a deterministic basis to adequately simulate 
in detail the cell metabolism self-regulation, cell growth, and its 
replication for such an astronomical cell metabolism complexity 
is practically impossible due to the lack of structured and 
comprehensive experimental information, and computational 
limitations. A review of some trials are made by [40,11,12,14,32]. 
That is because the cell metabolism is highly sophisticated, 
involving O(103-4) components, O(103-4) transcription factors 
(TF-s), activators, inhibitors, and at least one order of magnitude 
higher number of (bio)chemical reactions, all ensuring a fast 
adaptation of the cell metabolism to the changing environment 
through complex genetic regulatory circuits (GRC-s), that 
includes individual or chains of „gene expression regulatory 
modules of reactions” (GERM-s), genetic switches (GS), operon 
expression, etc. [11,12,14,32]. The cell is highly responsive to 
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the environmental stimuli and highly evolvable by self-changing 
its genome/proteome and metabolism, that is the stoichiometry 
and the reaction rates (fluxes) of the enzymatic reactions to get 
an optimized and balanced growth by using minimum resources 
(nutrients/substrates).

In spite of such tremendous modelling difficulties, the 
development of structured reduced deterministic (rather than 
stochastic) MSDKM or HSMDM models on a deterministic 
basis reported significant progresses over the last decades 
[10,11,12,14,32,31,41-43]. Such reduced cell models are able 
to adequately reproduce the dynamics of some CCM complex 
metabolic syntheses [10,31,32,40,44,45,46,47], but also the 
dynamics of some GRC-s [9,11,12,14,32,] tightly controlling the 
metabolic processes. Even if they are rather based on sparse 
information from various sources, unconventional statistical 
identification, and lumping algorithms [11,12,14,32,15,16,48,49], 
such structured reduced deterministic kinetic models have 
been proved to be extremely useful for in-silico (a) analyse 
and characterize the cell CCM, (b) for designing novel GRC-s 
conferring new properties/functions to the mutant cells, or (c) for 
engineering bioreactor evaluations [10,24,11,12,14,32, 50] (see 
the part 2 of this paper).

The current (default) approach to solve the model-based 
design, optimization and control problems of industrial biological 
reactors is the use of unstructured models of Monod type (for cell 
culture reactors)[3] or of Michaelis-Menten type (if only enzymatic 
reactions are retained)[21,22,23,35,51,52] that ignores detailed 
representations of cell processes. The applied engineering rules 
are similar to those used by the CBE and inspired from the NSCT 
[25,34,53,54-60]. 

However, by accounting for only key process variables 
(biomass, substrate and product concentrations), these global 
(unstructured) dynamic models do not properly reflect the 
metabolic changes, being unsuitable to accurately predict the 
cell response to environmental perturbations by means of (self-)
regulated cell metabolism [9,61,11,12,14,32].

The alternative is to use structured kinetic models, by 
accounting for cell metabolic reactions and component dynamics. 
Such deterministic models lead to a considerable improvement 
in the predictive power, with the expense of incorporating a 
larger number of species mass balances including parameters 
(rate constants) difficult to be estimated from often incomplete 
data (by using complex NLP, MINLP, and statistical procedures 
[48,168,32,49,15,16]), and, consequently, difficult to be used for 
industrial scale purposes [9,10,15,16,32,62,].

As a result, an impressive large number of valuable structured 
deterministic kinetic models (based on a mechanistic description 
of the metabolic enzymatic reactions tacking place among 
individual or lumped species of the cell) have been proposed in 

the literature to simulate the cell CCM dynamics, with including 
tenths-to-hundreds of key species. Here, it is worth mentioning 
the E. coli model of [63] used by [31,44,64,65,66,67,68] for 
various purposes, or the S. cerevisiae glycolysis model of [69], 
or the JWS platform of [70], or the MPS platform of [71] to 
simulate cell metabolism (dynamics and/or stationary fluxes), to 
mention only few of them. Simulation platforms, such as E-cell of 
[72,73], or V-cell of [74], accounting for thousands of species and 
reactions, display extended capabilities to predict the dynamics of 
the cell metabolism under various conditions, based on EcoCyc, 
KEGG, Prodoric, Brenda and other bio–omics databanks (review 
of [14]). A worthwhile CCM-based dynamic or stationary models 
were reported by Maria [10,31,44] based on a lumped reaction 
pathway schematically represented in (Figure 2). 

Some of structured deterministic CCM kinetic models have 
been reviewed by [11,12,14,32]. Deterministic MSDKM kinetic 
models using continuous variables has been developed by Maria 
[44] for the glycolysis, and by [64,65,75,76,77,78] for the CCM in 
bacteria of industrial interest. Such MSDKM models can adequately 
reproduce the cell response to continuous perturbations. The 
MSDKM cell model structure and size is adapted based on the 
available bio–omics databanks, and experimental information. 
Even if such extended structured models are currently used 
only for research purposes, being difficult to be identified, it 
is a question of time until they will be adapted in the form of 
HSMDM–s for industrial / engineering purposes. As proved by 
this work, and by several examples given in the part 2 of this paper, 
already significant progresses have been reported in this respect.

The Parts 1 and 2 of this work presents a holistic ‘closed loop’ 
approach for the development of models of biological systems 
[79]. The ever-increasing availability of experimental (qualitative 
and quantitative) information, at the cell metabolism level, but also 
about the bioreactors’ operation necessitates the advancement of 
a systematic methodology to organise and utilise these data. The 
resulted HSMDM–s were proved to successfully solving more 
accurately difficult bioengineering problems. In such HSMDM-s, 
the cell-scale model part (that is the nano-level state variables) 
is linked to the biological reactor macro-scale state variables 
for improving the both model prediction quality and its validity 
range. The case studies presented and discussed in the parts 3&4 
of this work [14] prove this engineering aspect.

In fact, the use of HSMDM hybrid models realizes a valuable 
combination of the process modelling-scales, by linking 
unstructured with structured process characteristics to generate 
more precise predictions (see the examples given by [9,10,24]). 
Basically, the HSMDM hybrid models use a two-level hierarchy: 
the bioreactor macroscopic state variables linked with the nano-
scale variables describing the cell key metabolic processes, and 
cell syntheses of practical interest (usually resulting in excretable 
valuable metabolites). 
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Figure 2: Simplified representation of the CCM pathway in E. coli of [63,31] (the “wild” cell including the PTS-system). Fluxes 
characterizing the membranar transport [Metabolite(e) ↔ Metabolite(c)] and the exchange with environment have been omitted 
from the plot. See [31] for details and explanations regarding the numbered reactions. Notations: [e]= environment; [c]=cytosol. 
Adapted from [31] with the courtesy of CABEQ Jl. The considered 72 metabolites, the stoichiometry of the 95 numbered reactions, 
and the net fluxes for specified conditions are given by [31]. The pink rectangle indicates the chemical node inducing glycolytic 
oscillations [61,81]. Notations , + and - denotes the feedback positive or negative regulatory loops respectively. GLC = glucose; 
F6P= fructose-6-phosphate; FDP = fructose-1,6-biphosphate; see the abbreviation list for species names; V1-V6 = lumped reaction 
rates indicated by [10]. Species notations are explained in the abbreviation list of [10].

In fact, such a HSMDM (hybrid structured cell dynamic 
model) must include only the pathway responsible for the 
target metabolite synthesis, linked to the essential parts of the 
CCM, that is the lumped modules of the cell core. These CCM 
core modules include, among others, the glycolysis, the glucose 
(GLC) uptake system [i.e. the phosphotransferase (PTS), or an 
equivalent system], the “adenosine triphosphate” (ATP)-recovery 
system (i.e. the ATP-use-recovery cycle), TCA (tricarboxylic 
acid, or citric acid cycle), PPP (Pentose-phosphate pathway). 
Of course, additional CCM reaction pathways modules must be 
added to the structured cell model (in a detailed or reduced/

lumped form) if their presence is absolutely necessary to derive 
consistent CCM simulations. See for instance the discussion of 
[10,24,31,32,44,46,61,80].

A special interest was given to the accurate modelling of 
the glycolysis dynamics and its self-regulation [44,61,81-83] 
as long as this core-module of the CCM includes intermediates 
which are starting nodes for the internal production of lot of cell 
metabolites (e.g. succinate (SUCC), citrate (CIT), amino-acids 
like cysteine, lysine, phenyl-alanine, tryptophan (TRP), etc., see 
Figure 3) [2,31,47,83]. This need to have good quality structured 
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cell models to simulate the dynamics of the bacteria CCM (and 
its regulation via cell GRC-s/GRN-s) became a subject of very 
high interest over the last decades, allowing an in-silico design of 

GMO-s with desirable characteristics of various applications in 
the biosynthesis industry, civil engineering, medicine, and other 
fields [11,12,14,32].

Figure 3: Summary (principle) scheme of the CCM in a eukaryotic cell. Glycolysis (the central vertical pathway) represents the key 
core of CCM. Source = https://en.wikipedia.org/wiki/File:Metabolic_Metro_Map.svg

MSDKM and HSMDM models advantages

Even if such complex / extended dynamic model requires 
more experimental and computational efforts to be built-up, as 
proved by the approached case studies in the parts 3&4 of this 
work [14], the resulted deterministic modular structured cell 
kinetic model (MSDKM) of the key-parts of cell CCM and GRC-s (of 
interest), as well as the hybrid (bi-level, that is the cell-species state 
variables, linked to the macro-level bioreactor state variables) 
dynamic models (HSMDM) present a large number of advantages 
compared to the classical (default) unstructured models of Monod 
type (for cell culture bioreactors), or of Michaelis-Menten type 
(if only enzymatic reactions are retained) that ignores detailed 
representations of cell metabolic processes. Thus, among the 

multiple advantages of HSMDM models are to be mentioned the 
following most relevant ones:

(i).- A higher prediction detailing degree. Thus, 

(i-a). For the case study referring to the HSMDM used to 
design and simulate the GRC responsible for mercury (mer) 
operon expression in the wild or GMO design E. coli cell (see 
the part 4 of this work and [14,32,9,84,85]), a higher prediction 
detailing degree is reported, that is predicted dynamics of [26(cell 
species) + 3(bulk species)] vs. only [3 (bulk species)] by a classical 
macroscopic SCR- TPFB unstructured (global) dynamic model, 
while covering a wider range of input [Hg2+] loads, with also using 
cloned E. coli cells with various amounts of mer-plasmids [Gmer]. 
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Here SCR denotes a semi-continuous bioreactor, that is a CSTR 
(continuous stirred tank reactor) of variable feeding, of TPFB 
(three-phase fluidized bioreactor) constructive type [9,173].

(i-b). For the case study referring to the HSMDM used to 
simulate the dynamics of the species at cell-level, and bulk-phase 
level in a fed-batch bioreactor (FBR), but also to maximize the 
tryptophan (TRP) production (see the part 3 of this work and also 
[14,32,10,24]), a higher prediction detailing degree is reported, by 
characterizing the dynamics of [11(cell species) + 4(bulk species)] 
vs. only [3 (bulk species)] by a classical macroscopic FBR global 
model, while covering a wider range of control variables, and 
allowing the design/check of various GMO E. coli cells strains.

(ii).- Prediction of the inner cell key-species reaction rates 
(different from the apparent rates of the substrates and excreted 
products observed in the bioreactor). See the above case study (i-
a) of [9,84,85], and the case study (i-b) of [10,24]. 

(iii).- The structured [cell-and-bioreactor] hybrid model 
predictions can cover a wider range of input/control variables of 
the bioreactor. Thus, for the above case study (i-a), the HSMDM of 
Maria and Luta [9] realizes a higher prediction detailing degree, 
that is simulated dynamics of [26(cell species) + 3(bulk species)] 
vs. the dynamics of only [3 (bulk) state variable] predicted by a 
classical macroscopic SCR- TPFB model. Such advanced HSMDM 
predictions can cover a wider range of input [Hg2+] loads (0–100 
mg/L), and can be used to design cloned E. coli cells with various 
amounts of mer-plasmids [Gmer] in a wider feasible range of (3–
140 nM). 

(iv).- The HSMDM model can predict the bacteria metabolism 
adaptation to environmental changes over dozens of cell cycles, 
and the effect of cloning wild E. coli cells to obtain (GMO) with 
modified characteristics/properties/behaviour under stationary 
or perturbed bioreactor operating conditions. See the case study 
(i-a) for details (part-4) [9,84,85,14].

(v).- The extended HSMDM can offer predictions of a 
higher accuracy when they are used to in-silico (model-based) 
engineering developments (bioreactor design, or its off-line 
optimization) compared to unstructured/global models (see the 
parts 3&4 of this work, for several bioreactor cases). For instance, 
(i-b) the HSMDM could better predict the optimal time stepwise 
feeding policy of a fed-batch reactor (FBR) to increase the 
tryptophan (TRP) production (Part 3) [10,24]. In the above case 
study (i-a), the extended HSMDM allows optimizing the operating 
policy of a SCR-TPFB regarding the biomass concentration, the 
inlet feed flow-rate, the inlet [Hg2+], the immobilized biomass 
support size, and the [Gmer] concentration in the used cloned E. 
coli cells [9,84,85,173]. 

(vi).- A similar procedure of using hybrid dynamic models 
can be applied to optimize the multi-enzymatic systems, by 
linking several interacting complex enzymatic reactions to the 

reactor state-variables. For instance, in a bi-enzymatic reactor 
case, [21,22,23,35,86] used a HSMDM to derive optimal operating 
policies of a batch reactor (BR), a series of BR-s of equal size 
but of different (adjustable) initial load (SeqBR), or of a FBR by 
accounting for multiple competing optimization objectives.

(vii).- Complex HSMDM-s can also be used for bioinformatics 
studies, by evaluating the influence of the bioreactor operating 
conditions (that is the control macro-variables) on the dynamics 
of cell nano-scale key-intermediates and fluxes involved in the 
synthesis of the metabolite of interest. For instance, in the above 
case study (i-b) , the HSMDM including the reaction modules of 
glycolysis, ATP-recovery system, TRP-operon expression, and 
biomass [X] production allows a quick evaluation of the E.coli 
cell metabolic fluxes (related to the metabolic engineering topics 
of [27] ), thus directing the design of GMO cells with desirable 
properties (‘motifs’) [10,24].

(viii).- Extended HSMDM can successfully be used to obtain 
lumped dynamic models of the bioreactor useful for rapid 
engineering calculations, by employing specific model reduction 
rules and additional kinetic data valid in the local operating 
domains (in the control variable space). Specific kinetic model 
consistent reduction rules are given by [48,49,87] for nonlinear 
models, or [88,89] for linear models cases. As a result of such 
an approach, the bioprocess complexity may be described by a 
succession of local reduced models enfolded on the real process. 
The locally reduced models include only the key metabolic 
pathways to obtain the relevant process state predictions (of 
interest). 

(ix).- As a corollary to the issue (vii), The structured HSMDM 
[cell-and-bioreactor] models are also useful for understanding 
the cellular bioprocess in direct connection to the bioreactor 
operating mode. For instance, in the above case study (i-b), such 
an extended cell model can in-silico determine the conditions of 
occurrence of oscillations for the cell glycolysis [44,47,80,81,83], 
or oscillations in the TRP-operon expression [47,61,], or those 
leading to a balanced cell growth (quasi-steady-state QSS, 
conditions, i.e. the cell homeostasis) [80]. As another example, 
in the above case study (i-a), the extended HSMDM can predict 
the mer-enzymes expression levels and the cytosolic mercury 
reduction rate depending on the mer-plasmids level [Gmer] in 
the cloned E. coli cells.

(x).- Some other case studies supporting the use of complex 
HSMDM are mentioned in the parts 3&4 of this work for various 
purposes [14,32]. For instance,(a) to in-silico design GMO E. coli 
strains for maximizing the production of both succinate (SUCC) 
and of biomass in a batch reactor (BR) by using the gene-knockout 
and the Pareto front techniques [31]; (b) to off-line optimize the 
operating policy of a FBR to maximize the monoclonal antibodies 
(mAbs) production [2,90], etc.
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Application of CBE and NSCT concepts/principles 
and rules to construct HSMDM dynamic models 

Basically, by reviewing the rules to construct MSDKM and 
HSMDM models, and their applications, this work is aiming to 
prove the feasibility and the advantages of using the classical 
and novel concepts and numerical tools of the chemical and 
biochemical engineering (CBE), and of the control theory of 
nonlinear systems (NSCT) to develop extended cell dynamic 
math models with including the key-reaction modules of the cell 
CCM, and of GRC-s involved in the regulation of the metabolites’ 
syntheses of practical interest [11,14,32]. 

While the 1-st part of this work is aiming at reviewing the 
general CBE concepts used for such an approach, the 2-nd part 
of the work will briefly reviews the ’whole-cell of variable-volume’ 
(WCVV) modelling framework introduced and promoted by the 
author in previous works, inspired by the CBE applied rules 
in the case of nonlinear reacting systems of variable volume. 
Also, this 2-nd part reviews and points-out the features of the 

deterministic WCVV models, and its advantages when simulating 
GERM-s, and GRC-s dynamics in living cells, by contrast to the 
classical (default) WCCV (whole-cell constant-volume modelling 
framework). The same review includes a short description of 
the regulatory performance indices (P.I.-s) of GERM-s (inspired 
from the NSCT), and also rules to link GERM-s when modelling 
GRC-s, as well as other related theoretical aspects necessary to 
construct MSDKM and HSMDM models. Special attention is paid 
to the conceptual and numerical rules used to construct various 
individual GERM-s kinetic models, but also various GRC-s (e.g. 
toggle-switch, amplitude filters, operon expression, etc.). 

To apply the CBE and NSCT principles and rules, as 
documented by [11,12,14,32], to overcome the cell process 
dynamics complexity, the metabolic pathway representation 
with continuous and/or stochastic individual or lumped 
reactions/variables remains the most adequate and preferred 
representation of cell processes, the adaptable-size and structure 
of the lumped model (species and/or reactions) depending on 
available information and the utilisation scope. 

Figure 4: Chemical engineering modelling rules and concepts applied in Systems Biology and Bioinformatics, after [11,12,14,32, 
46,13].
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The main advantages of deterministic / continuous variable 
kinetic models are coming from the use of experience, concepts, 
math representation, rules, and algorithms of the CBE (Figure 
4 and Figure 5) [11,12,14,32, 46,48,13]. The reaction rate 
expressions in the deterministic models of continuous variables 
are the usual ones of CBE that is of (extended) Michaelis-Menten, 
or Hill type (see Figure 6). Based on these CBE principles and rules, 
a large number of CCM kinetic models have been reported in the 
literature, such as those of [26,44,64,65,91]. A short discussion is 
given by [10,44]. Such a CCM-based kinetic model (Figure 2) was 
used by [10,24] to optimize an experimental pilot-scale FBR. In 
fact, the glycolysis together with the phosphotransferase (PTS)-
system, or an equivalent one for GLC(glucose)-uptake, and with 
the pentose-phosphate pathway (PPP), and with the tricarboxylic 
acid cycle (TCA), all these are part of the so-called “central carbon 
metabolism” (CCM)(Figure 2 and Figure 3) [31].

Even if complicated and, often over-parameterized, the 
continuous variable dynamic deterministic ODE models (eq. 
1A-B, eq. 3A-B, eq. 4A-B, eq.5-6, eq. 8 from part 2 and [14,32]) 
of the CCM metabolic pathways, or of GRC-s present a significant 
number of advantages, being able to reproduce in detail molecular 
interactions, the cell slow or fast continuous response to exo/
endo-geneous continuous perturbations [40,43]. Besides, the 
use of ODE kinetic models presents the advantage of being 
computationally tractable, flexible, easily expandable, and suitable 
to be characterized using the tools of the nonlinear system theory 
[92], by accounting for the regulatory system properties, that is: 

dynamics, feedback / feedforward, and optimality. 

And, most important, such ODE kinetic modelling approach 
allows using the strong tools of the classical (bio-)chemical 
engineering (BCE) modelling concepts summarized in (Figure 
4 and Figure 5). The most important ones are the followings 
[11,12,14,32, 46,13,82]:

C1. Fulfillment of the molecular, and elementary species 
(atoms types) conservation law (species differential mass balance 
set) [12,14,32]. 

C2. Fulfillment of the atomic species conservation law ( atomic 
species mass balance).

C3. The thermodynamic analysis of reactions (that is 
quantitative assignment of reaction directionality) [93]

C4. Set equilibrium reactions by using Gibbs free energy 
balance analysis; set cyclic reactions; find species at quasi-steady-
state to replace its differential mass balance with an algebraic 
equation [94]

C5. Extended HSMDM–s allow improved evaluation of steady-
state flux distributions (i.e. stationary metabolic reaction rates) 
that provide important information for metabolic engineering 
[94,14,32].

C6. Allow application of ODE model species and/or reaction 
lumping rules [48,49].

Figure 5: Biochemical engineering modelling rules and some concepts to be applied in Systems Biology and Bioinformatics, after 
[11,12,14,32, 46,13].
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When developing deterministic models for the CCM, or for 
other cell metabolic processes of a micro-organism, to be further 
used for GMO design, an important aspect is to also include math 
(kinetic) models of individual GERM-s characterizing the gene 
expression control of the enzymes production. Also, by linking the 

interfering GERM modules, complex GRC regulatory chains can 
thus be obtained [11,12,14,32,95]. Such GRC-s refers to genetic 
switches (Figure 7), or operon expression (Figure 8), genetic 
amplifiers, etc. [11,12,14,32, 43,96,97,98,99].

Figure 6: Some usual kinetic expressions used by the ODE type dynamic models of the cell genetic circuits (GRC, GERM-s), or of 
the cell metabolic biochemical reactions. Adaptation after [11,12,14,32, 46,13,43,134].

Development of ODE dynamic models to adequately reproduce 
such complex synthesis related to the CCM [26,64,91], but also to 
the GRC-s tightly controlling such metabolic processes reported 
significant progresses over the last decades in spite of the lack of 
structured experimental kinetic information, being rather based 
on sparse information from various sources and unconventional 
identification / lumping algorithms [11,12,14,32, 43,48,49,100]. 
However, such structured models are extremely useful for in-silico 
design of novel GRC-s conferring new properties/functions to the 
mutant cells, in response to external stimuli. This emergent field 
belongs to the Synthetic Biology (see below) [31,101-112]. This 
topics belongs to the so-called ’computational systems biology’, 
or simply ’bioinformatics’. In fact, the two emergent research/
applicative fields are closely inter-connected, as depicted in 
(Figure 9), and strongly related to the CBE, NSCT, and Systems 
Biology principles and rules.

Systems Biology

Systems Biology is defined as “the science of discovering, 
modelling, understanding and ultimately engineering at the 
molecular level the dynamic relationships between the biological 
molecules that define living organisms” (Leroy Hood, Head Inst. 
Systems Biology, Seattle, USA). Systems Biology is one of the 
modern tools, which uses advanced mathematical simulation 
models for in-silico design of GMOs that possess specific and 
desired functions and characteristics. The works of [11,12,14,32, 
43,48] presented short reviews about Systems Biology , by 
including a short history, their modern concepts, and their 
principles, and math/numerical-experimental tools and modelling 
rules, derived from those of the CBE and NSCT to construct 
deterministic models used by the Systems Biology to numerically 
simulate the dynamics of cellular metabolic processes. This 
involves application of the classical CBE modelling techniques 
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(mass balance, thermodynamic principles, see the above (C1-C6) 
principles), and algorithmic rules, and also the NSCT principles/
rules (see in the part 2 of this work, the definitions of the P.I.-s 
used to characterize the individual GERM–s and GRC–s self-
regulatory efficiency inside the cell [11,14,32]), and of the 
bioinformatics rules, briefly presented in (Figure 4, and Figure 
5), and in the above (C1-C6) principles. The main principles, 

concepts, and rules of the CBE are also shortly reviewed by [113-
117]. The metabolic pathway representation with continuous 
and/or stochastic variables remains the most adequate and 
preferred representation of the cell processes, the adaptable-
size and structure of the lumped model depending on available 
information and the utilisation scope [11,12,14,32, 43,48,49].

Figure 7: Example of linked GERM-s to form GRC-s (genetic switches here). See the reviews of [11,12,14,32, 43,134,82,13,46,165].

The in-silico re-design of the cell metabolism is an up-to-
date subject in Synthetic Biology. But in this effort, Synthetic 
Biology is closely assisted by the Systems Biology focus on the 
cell organization, the former being one of the main tools in the 
in-silico design of genetically modified micro-organisms (GMO) 
with desired characteristics, and with applications in medicine, 
such as therapy of diseases (gene therapy), production of new 
devices based on cell-cell communicators, biosensors, production 
of vaccines, etc. The Systems Biology also aims at understanding 
the dynamic interaction between components of a living system 
or between living systems. (http://www.erasysbio.net/). To 
realize these ambitious objectives, Systems Biology uses a wide 
range of tools, but mainly complex mathematical simulation 

models and numerical rules imported from the CBE, NSCT , and 
Bioinformatics linked to the bio–omics databanks (see below).

When developing extended structured HSMDM models, 
besides CBE, NSCT, and Systems Biology principles and rules 
(Figure 4, Figure 5, Figure 9), the Bioinformatics concepts and 
rules play an essential role because they make the connection 
with the bio-omics databanks [see the below databanks and cell 
simulation platforms (a-e) ], from which the most important 
information refers to the genome map and its correspondence to 
the proteome map for a certain micro-organism. 

The main objective of the ’computational systems biology’ 
is to model the kinetics of entire living cells at the molecular 
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level on a mechanistic base. Given the enormous complexity and 
unknown aspects of such systems, formulating reliable models 
with predictive ability remains only a dream. However, advances 
in genomics, transcriptomics, proteomics, metabolomics, and in 

the computing power provide hope that this objective might be 
realized within next couple of decades. Bioinformatic databases 
and software platforms are being constructed for modeling entire 
cells with massive amounts of data [72,73,103,118]. For example:

Figure 8: Some applications of GRC models [11,12,14,32].

Figure 9: Equivalence of concepts, and rules to interconnect the Systems biology and the Bioinformatics. After [166].
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Figure 10: Some of the common rules used by the Bioinformatics [152].
Top:  Example of a Multiple Sequence Alignment (MUSCLE format) analysis on human head louse species. These are sequences 
being compared in a MUSCLE multiple sequence alignment (MSA). Each sequence name (left most column) is from various louse 
species, while the sequences themselves are in the second column. Source = 
https://en.wikipedia.org/wiki/Bioinformatics#/media/File:Muscle_alignment_view.png
Down-left:  Interactions between proteins are frequently visualized and analyzed using networks. This network is made up of 
protein–protein interactions from Treponema pallidum, the causative agent of syphilis and other diseases. Source = 
https://en.wikipedia.org/wiki/Bioinformatics#/media/File:The_protein_interaction_network_of_Treponema_pallidum.png
Down-right:  3-dimensional protein structures such as this one are common subjects in bioinformatic analyses. Source = 
https://en.wikipedia.org/wiki/Bioinformatics#/media/File:1kqf_opm.png

a) E-Cell software allows simulating reaction pathways 
within compartment-based cells using the continuous-differential 
modeling approach [72,73,119,120] (Figure 11-left). The 
computing platform objects are the followings: [compartments, 
compounds, genes, reactions)]. The E-cell cell simulation 
platform [72,73] has been used in conjunction with the EcoCyc 
[121], and KEGG [122,123] databases to simulate the dynamics of 
127 genes/protein found in M. genitalium.

b) V-Cell [124,125]. The computing platform objects are 
the followings: [model and geometry attached to each application, 
and the biological interface (real images taken with the Electron 
Microscope)].

c) CellML, JWS (Silicon-cell) [70,126-129] is a cell 
modelling and simulation framework (Figure 11-right) with 
compartments and membranes, each of which may include 

species, reactions and membrane fluxes.

d) M-Cell simulation platform of [130] (Figure 12-left) 
allows simulating high-level complex cell sub-systems, such as 
neural communication networks, together with proteins and 
enzymes involved in exo-/endo-cytosis, synaptic transmission, 
transport and signal reception. The M-Cell simulator includes 
simulation of Brownian random walk, and Monte Carlo stochastic 
algorithms for modeling small numbers of diffusing ligands 
interacting with individual 3D binding sites in spatially complex 
environments.

e) The A-Cell platform [131,132] (Figure 12-right; Figure 
13) uses (‚electrical circuit‘ like models) to simulate biochemical 
reaction schemes, neurons connections, and pathways. For other 
bio-modelling software packages the reader is referred to the 
reviews of [118,131,132,133].
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Figure 11: (left) E-CELL simulator of the CCM [72,73]; (right) CellML (JWS) simulation platform of cell metabolism dynamics, or 
stationary conditions [70,126].

 

Figure 12: Some cell simulators of stochastic type (“M-cell”, left) [130], and (“A-cell”, right) of electric-circuit type [131,132].
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Figure 13: First attempts to model the cell CCM, GRC-s are inspired from the electric circuit’s theory, that is the so-called “A-cell” 
[131,132].

Figure 14: Flux balance analysis is working with matrix math models [27]. Solving a Flux balance analysis (FBA) problem translates 
in solving a (non)linear programming problem (NLP), due to the supplementary non-linear constraints [167]. Notations: x = cell state 
variables; v = vector of metabolic fluxes; t = time; S = the stoichiometric matrix of the considered metabolic reactions (individual, 
or lumped) [11,12,14,32]. Flux balance analysis – the main objective of metabolic engineering, and an essential preliminary step in 
design GMO-s. [174].
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To easier realize the numerical simulations of such complex 
cell math models, specific programming languages (SBML, 
[118,133]), or on-line simulation platforms (JWS, [70,126]) 
have been developed. By using such modern computing tools, 
simulation of various biological systems was possible, such as 
[11,12,14,32, 13,43,46,134]:

• Single cell growth (e.g. Escherichia coli, Haemophilus 
influenzae, Mycoplasma genitalium, yeast, etc.

• Model metabolic oscillations (red-blood-cell synthesis, 
glycolysis, TCA (tricarboxylic acid) cycle, oxidative phosphorylation, 
key species oscillations, etc.) [44,61,47,80,81,83,104,135]. 
Conditions for oscillations occurrence for various cell processes 
are given by [44,47,61,81,175]. 

• Metabolic control of protein synthesis regulation (GERM-s, 
GRC-s) [11,12,14,32, 43,134, 136-140].

• Modelling the central carbon metabolism (CCM) [45,64,91]. 
Dynamic models of some CCM-core modules and applications are 
given by [10,26,31,44,61] (Figure 2, Figure 3, Figure 11-left).

• FBA (flux balance analysis of the cell metabolism) used to 
design of GMO-s [95] (Figure 14). Metabolic fluxes (v(j)) are 
defined as the enzymatic reaction rates at the quasi-stationary-cell-
conditions (QSS), that is at the cell balanced growth (homeostasis). 
Determination of metabolic fluxes (by using the metabolic 
engineering tools [27], or the dynamic HSMDM models) allowed 
to in-silico derive GMO-s of desired characteristics by using the 
so-called “gene knock-out” technique [174]. By removing a certain 
enzyme (and its attached encoding gene), the catalyzed reaction 
is also removed from the CCM. Similarly, the target reaction 
(flux) can be amplified / diminished by increasing / decreasing 
the corresponding enzyme (biocatalyst) concentration, and, 
correspondingly by increasing / decreasing the encoding gene 
plasmid concentration in the analyzed micro-organism genome. 
In other words, FBA, and the metabolic engineering are the 
essential preliminary steps in design GMO-s. [237].

• Modelling the cell cycle [141,142].

• Modelling the drug release and cell-drug interactions 
[143,144].

• Modelling cellular communications, neuronal transmission

• Analysis of ‘logical essence’ of life (life minimal requirements) 

At the same time, the exponential-like increase of the 
experimental biological information lead to development of 
valuable bio-omics databanks, such as those described by 
[11,12,14,32]:

-.- KEGG [122,123];

-.- JWS [70,126];

-.- EcoCyc [121]; 

-.- Roche [145], etc. 

However, it is only over the last decades when Systems Biology 
reported notable successes due to a considerable increase in 
computing power of the modern computers. It is to mention 
here, for instance, the cell simulator platforms, and online model 
repository JWS of [70,126], or those developed by Rocha et al. [42], 
or by Tomita et al. [72,73], together with continuous expansion 
of the above referred bio-omics databases JWS, KEGG, EcoCyc, 
Roche, etc., and reported advances in the numerical algorithms 
used by bioinformatics, CBE, and NSCT [11,12,14,32]. 

Due to such favourable premises, related to the expansion of 
bio-omics databanks, and cell metabolism (CCM, GRC-s) dynamic 
models, novel works have been reported over the last decades. 
Among the milestone works in Systems Biology it is to mention the 
contributions in modelling / design of GRC-s, GERM-s, FBA, MCA 
of [11,12,14,32, 92,146-149]. The number of published papers in 
the Systems Biology area increases with two orders of magnitude 
from 2000 to 2007, and it is still exponentially increasing, most 
of them was being founded by programs of the European Science 
Foundation.

As stated by [150,151], tremendous applications of Systems 
Biology have been reported over the next decades in the below 
areas (see also [11,12,14,32]) (Table 1): 

Table 1: Applications of Systems Biology have been reported over the 
next decades in the below areas.

Designing mutant, cloned  cells with desired 
‘motifs’ Cell biology

Genetics biology or genetics Food science

Biotechnology, Bioengineering Immunology

Biomedical engineering Molecular biology

Biochemistry Biodiversity

Agricultural biology and Ecology Bioinformatics

Biophysics

Bioinformatics

According to [152], the bioinformatics is an inter-disciplinary 
field that develops methods and software tools for understanding 
and interpret the biological data, in particular when the data 
sets are large and complex. As an interdisciplinary field of 
science, the bioinformatics combines several classic/modern 
disciplines, such as: biology, chemistry, physics, computer science, 
information engineering, mathematics, and statistics to analyze 
and interpret the biological data. Bioinformatics has been used 
rather for in-silico analyses of biological queries using a large 
number of computational and statistical techniques, aiming to 
design novel GMO-s of practical (industrial) use [41,153-162]. 
The most important rule of the Bioinformatics refers to the rapid, 
and computer-assisted genome sequentiation [152]. Some of the 
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common rules used by the bioinformatics are given in (Figure 10) 
[152].

Figure. 15: The engineering analysis cycle of a biological process: experimental lab-scale investigations, coupled with the math 
(kinetic) modelling, and the numerical analysis of the biological process aiming to optimize a fed-batch (FBR) industrial bioreactor 
operation.
[The green cell] Simplified CCM reaction pathway in E. coli used in the hybrid structured model, adapted after [24,31,44]. It includes 
four linked reaction modules: [a] glycolysis; [b] ATP recovery system (the pink rectangle, including the synthesis of adenosin co-
metabolites ATP, ADP, AMP); [c] the TRP synthesis (the gray area), and the biomass [X] growth model. This reaction pathway has 
been used by [10] to derive a hybrid FBR dynamic model for the TRP synthesis. Connection of the TRP synthesis to glycolysis 
is realized through the PEP node. Notations: GLC(ex)= glucose in the cell environment. Species abbreviations are given in the 
abbreviations list of [10]. Species in parenthesis are not explicitly included in the glycolysis model. Italic letters denote the enzymes. 
Squares include notations of enzymatic reactions V1-V6 included in the glycolysis model. Adapted from [31,44] with the courtesy of 
CABEQ Jl, and completed according to the kinetic model of [31]. [Right-up] The scheme of a FBR. [Left-down]. The optimal feeding-
policy with GLC solution in the FBR, was derived by [24].

Thus, Bioinformatics includes biological studies that use 
computer programming as part of their methodology/rules, 
as well as specific analysis ‘pipelines’ that are repeatedly 
used, particularly in the field of genomics. Common uses of 
bioinformatics include identification of candidates genes 
and “single nucleotide polymorphisms” (SNP-s). Often, such 
identification is made with the aim to better understand the 
genetic basis of disease, unique adaptations, desirable properties 
(esp. in agricultural species), or differences between populations. 
In a less formal way, bioinformatics also tries to understand 

the organizational principles within nucleic acid and protein 
sequences, called proteomics [152].

And, “in a context of increasing calls for biology to be 
predictive, modelling and optimization tools of Bioinformatics 
(most of them imported from CBE, and NSCT ) are the only 
approaches biology has for making satisfactory predictions” 
[163]. Due to the computing facilities offered by the algorithmic 
rules developed by the (bio)chemical engineering and nonlinear 
systems biology rules (Figure 4, Figure 5, Figure 6, Figure 
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15), the developed cell math models use a vectorial-matriceal 
approach (Figure 16), with a continuous model upgrading based 
on dynamic experimental data recorded in a chemostat (i.e. a 
continuously operated bioreactor), operated under steady-state, 

or in a dynamic regime following an input perturbation in the 
substrate/enzymes/biomass concentration in the solution fed in 
the bioreactor [64,95].

Figure. 16: Experiment-modelling cycle to obtain math models in biochemical / metabolic engineering. Math formalization includes 
working with vectors and matrices [168].

Given these developments, as well as the seemingly 
inexorable advances in computing power, it is tempting to believe 
that reliable whole-cell models (WC) with predictive power will 
be forthcoming once complete sets of ’bio-omic’ information 
become available. However, a better theoretical understanding 
of cellular life, viewed holistically, may be required before we 
can understand how life emerges out of complex networks of 
molecular-level interactions between cellular components. This 
study represents a foyer into whole-cell kinetic modelling, in 
an attempt to understand holistic aspects of cell-system from a 
quantitative computational perspective. 

Related to the WC math modelling aspect, a concerned section 
in the Part-2 of this work is aiming at examining some fundamental 
properties of living cells relevant to WC holistic math-modelling. 
Thus, a methodology to build-up regulatory kinetic schemes in a 
’whole cell variable cell volume’ (WCVV) modelling framework, 
but also under stationary/perturbed environmental conditions 
was proposed, developed, and promoted by Maria [11,12,14,32, 

17,18,43,99,100] for a generic protein/gene (P/G) pair synthesis 
process, its GERM regulatory module, but also for cell GRC-s, 
and for the whole CCM dynamic model construction. The model 
elements of novelty consist in accounting variable cell-volume, and 
constant osmotic pressure conditions. Thus, most of the drawbacks 
of classical (default) continuous-concentration simulators 
(developed for a constant volume system, WCCV) are removed. 
Exemplification is made for several relatively simple GRC-s from 
literature [11,12,14,32, 43,99,100].  The chosen examples 
analyse the impact of the proposed WCVV modelling approach 
on the MSDKM model prediction better quality, such as: (a) a 
more realistic prediction of regulatory scheme sensitivity to both 
stationary and dynamic perturbed conditions; (b) better pointed-
out the cell species interconnectivity (direct, or indirect through 
the cell volume to which all species contributes); (c) the effect of 
the so-called “cell-ballast” on the cell-behaviour vs. various type of 
perturbations; (d) a more realistic way to design interconnected 
GERM-s and rules to link them in GRC-s in a common volume 
growing environment. Other analysis aspects, not developed in 
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this paper, but exemplified in the Part 2 and 3&4 of this work, 
can be easily approached under the presented WCVV modelling 
hypotheses (Part 2), such as the cell system state multiplicity, and 
characterization of their oscillatory phenomena [11,12,14,32].
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