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Introduction

The preferred surgical treatment for ankle fracture and 
arthritis is total ankle replacement (TAR). The clinical outcomes 
of TAR have improved recently because of the development of 
contemporary three component prosthesis [1]. To boost the TAR’s 
long-term stability, a number of clinical concerns still need to be 
resolved. There are numerous mechanisms that cause TAR to 
fail. One of the main causes of TAR’s early failure is component 
loosening. One of the main causes for the loosening of the tibial 
and talar components is stress/strain shielding. The excessive 
bone density loss brought on by this stress/strain shielding leads 
to pathological bone remodelling, which loosens the implant 
[2]. There are numerous studies that assess TAR performance. 
The influence of implant-bone interface conditions on strain 
distribution in the tibia and implant-bone micromotion have not 
been well studied, as can be seen from past studies. This study’s 
goal is to ascertain how implant-bone interfacial conditions affect 
the distribution of strain in the tibia bone and implant-bone 
micromotion. The current study may be useful for TAR’s pre-
clinical evaluation. 

 
Materials and Method

An implanted ankle joint FE model was created. Data sets 
from computed tomography (CT) scans were used to accomplish 
this. According to previous research, each bone was divided into 
cortical and cancellous bone using a threshold value of 1.30g.
cm-3 to rectify the partial volume impact [3]. The cortical bone 
was identified as a homogeneous, isotropic, and linearly elastic 
material with a Young’s modulus and Poisson’s ratio, respectively, 
of 19GPa and 0.3. Data sets from CT scans were used to distribute 
the cancellous bone material property, which was assigned as 
heterogeneous. In order to determine the heterogeneous material 
characteristics of cancellous bone, a linear relationship between 
bone density and CT grey value (expressed in terms of Hounsfield 
units) was implemented [4].

0.022 0.0008456 HUρ = + ×    (2.1)

A power law between Young’s modulus and density of bone 
was used similar to the previous study [3-4], in order to determine 
the Young’s modulus of cancellous bone
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1.994778E ρ=    (2.2)

For the cancellous bone, Poisson’s ratio was taken to be 0.3. 
Surgical recommendations (Small Bone Innovations, Inc.) were 
followed while selecting and positioning the Scandinavian Total 
Ankle Replacement (S.T.A.R@TM) prosthesis [5]. It is comprised 
of up of the tibial component, the meniscal bearing, and the talar 
component. For the tibial and talar components, Young’s modulus 
and Poisson’s ratio were chosen as 210GPa and 0.3, respectively, 
while for the meniscal bearing, they were chosen as 557MPa and 
0.46, respectively, to be consistent with prior studies. Four parallel 
springs were used to represent each ligament in order to distribute 
the proper load transfer. This study used a total of sixteen different 

types of ligaments, and the corresponding stiffness and material 
parameters were derived from earlier studies [6]. In the current 
investigation, reaction forces were set in accordance with the 
three positions of the ankle during gait, including dorsiflexion, 
neutral, and plantar flexion. From earlier literature, the amplitude 
of response forces for three different ankle locations were taken 
into consideration and are shown in Table 1 [6-7]. At the farthest 
posterior position of the calcaneus bone, muscle force (Achilles 
tendon) was adjusted to 75% of the total body weight. Tibial 
and fibular proximal ends have been fixed in accordance with 
the prior studies. Figure 1 depicts a 3-D FE model of a prosthetic 
ankle with various bones, prosthetic parts, and ligaments. For the 
contact simulation, an augmented-Lagrangian contact algorithm 
with a contact stiffness of and a penetration factor of 0.1 was used. 

Figure 1: FE model of implanted ankle joint.

Table 1: Magnitude of reaction forces corresponding to dorsiflexion, neutral and plantar flexion positions of ankle.

Concentrated Force (N) and Moment
Position

Dorsiflexion (-10ο) Neutral (0ο) Plantarflexion (+15ο)

Axial force (Z-component) 1600 600 400

Interior-exterior force (Y-component) 185 -150 -100

Anterior-posterior force (X-component) -185 -280 -245
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Results and discussion

Figure 2 illustrates the equivalent strain distribution at the 
tibia bone for the intact and implanted model for both interface 
conditions. In comparison to the intact model, there was a 
decrease in strain after implantation for both the bonded and 
debonded conditions. However, in the case of the debonded 
condition as opposed to the bonded condition, a greater reduction 
in strain was seen. For all three loading positions, a considerable 
strain reduction was seen at the proximal wall of the cortical 
and cancellous bone of the tibia when considering the debonded 
condition. While for the condition of the bonded implant-bone 
interface, a reduction in strain was observed along the proximal 
medial wall of the cortical and cancellous bone of the tibia. 

However, compared to intact models, there was more strain 
around the implant-bone interface for prosthetic models under 
bonded implant-bone interfacial circumstances. In comparison 
to the bonded implant-bone interfacial condition, strain shielding 
was greater in the debonded implant-bone interfacial condition. 
Excessive stress or strain shielding in the bone is the root cause 
of bone resorption brought on by bone remodelling and the 
consequent loosening of implants [8]. The current study’s findings 
indicated that proper osseo-integration between the implant and 
bone surfaces would be advantageous for the long-term results 
of the implant. The micromotion between the implant and bone 
was discovered to vary between 5µm to 45 µm, which is less 
than 50µm. Results indicated osseo-integration onto the covered 
surface of the implant would be possible.

Figure 2: Equivalent strain distribution at the tibia bone for intact and implanted model for both the interface conditions.
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The FE model in the current study contains a number of 
limitations and assumptions, which are stated below. Only 
ligaments and cartilages were considered soft tissues in the 
current FE models; other soft tissues were not well considered 
because their material properties are substantially different 
from those of bone. In accordance with past research [2,6,9], 
ligaments were simulated as a linear spring element. For a clearer 
understanding of the load transmission, a dynamics analysis of 
the ankle joint throughout a gait cycle might be more beneficial. 
For the 3D evolution of the bones, just one CT scans worth of data 
was used. It is true that multi-CT data from individuals of different 
ages and sexes may be more helpful for comprehending the 
effects of implantation and bone remodelling. For the formation 
of an intact ankle and the qualitative evaluation of load transfer 
and stress/strain distribution, more than one CT data set should 
be used. Using only CT-scan data sets, a qualitative estimation or 
results can be expected [10].

Conclusion

Here, using CT scan data, a realistic 3D FE model of the implanted 
ankle joint was built, complete with ligaments, anatomically 
appropriate boundary and loading conditions, regional material 
property distributions, and material characteristics. According 
to the current study’s findings, appropriate bone and implant 
bonding will be required to reduce strain shielding. The results of 
this study might help to improve TAR performance.
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