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Abstract


Past experiences regarding the near-fault effect of earthquakes have shown a potentially significant effect of vertical component on the 
response of bridges and their seismic equipment. In this study, a friction-rubber hybrid isolator was designed for a highway bridge and modeled 
to  evaluate  the  effect  of  vertical  seismic  component  on  the  performance  of  isolators  in  a  concrete  bridge.  Numerical  study  on  the  bridge  was  
conducted under two conditions:

i. With only two horizontal seismic components, and 

ii. With three seismic components (including the vertical component). 

For this purpose, finite element model of the structure was developed in Open Sees software and then subjected to nonlinear dynamic 
analysis under 29 different ground motion records. The results showed that maximum shear and axial force in the isolator elements undergo 
significant increase under all seismic excitations. Due to the absence of self-restoring force in the studied isolator, the permanent and maximum 
deck  displacement  increased  during  some  of  the  earthquake  records,  and  in  a  few  cases,  the  permanent  displacements  of  the  deck  were  
particularly significant. The axial forces of the isolators on the base and abutment were found to be correlated with the spectral acceleration at 
the period of vibration mode effective in vertical direction. 
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Introduction



   The growth of urban population and  industrial  activities and their steadily increasing transportation requirements have led to a widespread construction and use of highway structures in and around major cities. Bridges  play an essential role in transportation  networks  specify  after  earthquakes.   Given the vital role of these structures in transportation systems, ensuring their safety and optimal seismic performance is of significant importance. Base isolation systems can protect the superstructure against earthquake damage by decoupling it from the substructure and thus from the seismic load. Such seismic load reduction scheme largely depends on proper function of isolation units. Thus, factors associated with the performance of isolators are of significant importance for the seismic performance of structure and have to be evaluated under different seismic excitation. Vertical components and strong pulse motion of ground motions are among the factors that may adversely affect the performance of a bridge isolation system,
especially in near-fault areas. In  particular,  this  component can undermine the performance of friction isolators operating alone or in combination with rubber bearings. In such isolators, variation in axial force between the two sliding pads may induce instability in the energy dissipation process and cause erratic isolation  performance,  and  thereby  affect  the  relative displacement and shear response of the device and structure. Figure 1 shows a friction-rubber hybrid bearing in a bridge with box girder deck.

 
The effects of vertical seismic component on bridges with or without seismic isolation systems have been extensively researched. Some of these studies have emphasized the consequences of ignoring the vertical component in the near- fault structures. Papazoglou & Elnashai  [1] have  provided both analytical and field evidence supporting the damaging effects of vertical seismic component on buildings and bridges. They expressed that significant fluctuation in the axial force of vertical components leads to a reduction in the shear capacity
of columns. Gloyd [2] developed a design criteria by studying 60 pre stressed box girder bridges with due attention to the effect of vertical seismic component. Design values considered for the vertical shear force in deck and flexural moment in two main spans of these bridges indicate that dynamic response induced by vertical acceleration is much larger than the effect of dead load. Kunnath et al. [3] the effect of vertical seismic component on the seismic design recommended by Caltrans (Caltrans Seismic Design Criteria) regulation was investigated on multiple conventional bridges. The results of this study showed that Caltrans regulations have a poor accuracy and cannot account for the changes made by the vertical ground motion component in the axial force of column and the mid-span moment. Rahayi & Arezumandi [4] studied the effects of vertical seismic component on the bridge piers using the seismic records of Tabas 1978, Northridge 1994 and Kobe 1995 earthquakes. They reported that the presence of vertical component increases the axial force as well as axial and shear strain, but the consequent changes in shear force and longitudinal displacement are negligible. However, due to absence of seismic isolators in the structures examined in the aforementioned studies, their results cannot be relied upon to explain the seismic behavior in the presence of isolators.



[image: ]

Figure 1:   Sliding-rubber bearings used on the highway bridge.

 



 A number of researches have focused specifically on the effect of vertical seismic component on the isolator behavior. For example, Naeim & Kelly [5] investigated the relationship of horizontal and vertical stiffness with vertical load and lateral deformation respectively, and reported that increase in vertical load and lateral deformation leads to  a  decrease  in  vertical and horizontal stiffness respectively. Nakajima et al. [6] using experimental model and numerical analysis examined the effects of vertical seismic component on the bridge  piers  equipped with isolation systems. Considering the effects of vertical seismic component on the variation in the axial force of isolator component, they reported that these changes have no significant effect on response values. Nevertheless, they emphasized that when evaluating the performance of a base isolated bridge under vertical seismic component, changes in the friction coefficient should be duly considered. Iemura et al. [7] studied the effect of vertical acceleration on the seismic performance of Japanese
highway bridges under four seismic events. The results showed that vertical seismic component has a substantial effect on the response of isolation systems. In a study by Mazza & vulcano [8] on the response of a building resting on different hybrid isolators and subjected  to  all  three  seismic  components,  it  was  found that due to a longer natural period, the adoption of a friction- rubber system proves effective for controlling the damage of RC frame members. However, these researchers did not investigate the behavior of such systems affected by  ground  motions with significantly large vertical components. Warren et al. [9] investigated the effect of vertical seismic load on the low damping lead-rubber bearings in bridges, the results showed that vertical stiffness of isolation systems should not be ignored. In another study, Reyhano?ullari [10] studied the effect of vertical seismic component of seven accelerogram records on steel bridges with and without base isolation. They used numerical model of lead- rubber bearings in the study. The results of this study showed an increase in responses and their correlation with defined criteria. Wang C et al. [11] investigated the effects of vertical excitation on the seismic performance of a seismically isolated bridge with sliding friction bearings. Different bearing friction coefficients and different stiffness levels (pier diameter) were discussed in the paper. The study results showed that vertical excitation had a relatively large impact on seismic performance for a seismically isolated bridge with sliding friction bearings where vertical excitation dominates.



   Review of  aforementioned  studies  shows  the  importance of the vertical component effects on behavior of base isolated bridges and absence of a detailed investigation on the seismic behavior of hybrid friction-rubber isolators under seismic excitations with significant vertical component. To  address this issue, in this paper, a numerical model was developed to investigate the performance of the structure by nonlinear time history analysis.

   To  determine  the  relationship  of  vertical  acceleration with the axial force of isolator, the relationship between the response values and their corresponding spectral values along vertical direction was investigated. Moreover, since the seismic performance of a bridge largely depends on the performance of its seismic equipment, the effect of vertical earthquake component on the seismic response of hybrid isolator was studied. To find out the mentioned relationship and the performance of the isolator, first, a friction-rubber hybrid isolator was designed according to the AASHTO (American Association of State Highway and Transportation Officials, Guide Specifications for Seismic Isolation Design, 2010) recommendations [12]. A three- dimensional model of the bridge was then developed in the finite element Open Sees software [13]. Finally, the effect of vertical seismic components on the response parameters of the bridge and isolators was investigated under two groups of dynamic analysis: A group with only two horizontal seismic components; and another with two horizontal along with vertical component.





Bridge Specifications and Numerical Model

   For the purpose of numerical study, a continuous bridge consisting of two 25-meter spans. The deck was employed includes 5 girders and a concrete slab of 20cm thickness. In addition, the single pier comprises of 3 columns with bean- shaped cross-sections connected to the cap-beam. The girders attach  to  the  abutments  and  middle  pier  using  a  concrete

This command for uniaxial concrete materials utilizes the degrading linear unloading/reloading stiffness model developed by Kent and Park [15,16]. In unconfined concrete, strain is taken as 0.002 and 0.006 for maximum strength and crushing strength, respectively. In Confined concrete, strain of 0.005 and 0.05 occur
diaphragm  to  allow  for  an  integrated  performance.  Three isolators are installed in each of the abutments as well as theat maximum strength of 26.5
[image: ] and crushing strength of 25 middle pier below the concrete diaphragm on the cap-beams.The soil-structure interactions in the foundation and abutment
[image: ], respectively. A uniaxial material with a bilinear stress-were  ignored.  The  main  components  of  the  bridge  and  its isolated view are illustrated in Figure 2. In this study, an elastic a
strain behavior is considered for the reinforcement. Yield stress stick model was employed to simulate the bridge deck [14]. The was taken as 392.266 [image: ]
with a strain-hardening ratio of 0.01 command “Uniaxial Material Concrete01” was used to model the confined concrete, as well as the cover or unconfined concrete.
(Figure 3).
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Figure 2:   Main components of the bridge (a) Pier (b) Girders (c) Section of column.
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Figure 3:  Numerical model of isolated bridge

 



The  isolator  consists   of   a   rubber   bearing   attached to slider steel plates whose contact surface is coated by Polytetrafluoroethylen (PTFE). Figure  4a  demonstrates  the logic model and nonlinear behavior considered for the isolators.
A  schematic  view  of  the  hybrid  isolators  employed  in  this study is shown in Figure 4b. The initial stiffness in nonlinear behavior of device is provided by rubber pad which deflects
until  the  restoring  force  reaches  the  limit  required  for  the slider part to move. Equation 1 describes the friction force (Fb)  as a function of mass, gravitational acceleration and ground vertical acceleration at the time of earthquake. (Figure 4c)

[image: ]

   
Two types of these isolators were designed, the specifications
for which are given in Table 1 .
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Figure 4:  Numerical model of isolated bridge.

 




Table 1 :Specification of isolators.
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Figure 5:  Variation of friction coefficient as a function of velocity [18].

 


The sliding velocity and instantaneous vertical force applied to the isolators change. Consequently, the vertical force or vertical acceleration directly affects the shear force acting upon the isolator. On the other hand, changes in both sliding velocity
the coefficient of friction [18]. In this model, the coefficient of friction was experimentally calculated for different sliding velocities and 8 different vertical forces. Then, as demonstrated in Figure 5, the curve fitting was carried out based on the results. The coefficient is expressed according to Equation 2 as a function of the obtained minimum and maximum values [19].


[image: ]


   Where,  is the instantaneous velocity and a is an empirical parameter depending on the applied pressure as well as the conditions  of
  sliding  surfaces  (Figure 6).  Additionally,μmax and μmin are the values of coefficient of friction obtained at 
maximum  and  minimum  sliding velocities, which  vary  based on the vertical force. Variations in these two parameters were expressed by Bowden and Tabor through Equations 3 and 4 , a diagram of which is depicted in Figure 7 [20].
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Where, Amax  and Amin  are constants, and  nmax and  nmin the coefficient of friction, which in turn changes the shear force. Hence, the proposed behavior model by Dao was used to model
are empirically obtained coefficients with values smaller than 1.



[image: ]

Figure 6:   Rate parameter [17].
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Figure 7:  Friction coefficient vs vertical force [17].

 



Buckling

   The relationships needed to check and control buckling of rubber are provided by Naeim & Kelly [5]. The critical vertical load that can be sustained by an isolator can be obtained from Equation (5).


[image: ]


Where   PS is  the  shear  stiffness  per  unit  length  of  theisolator,  PE  is the Euler buckling load, G is the 
shear modulus, A is the cross sectional area, S is the shape factor (for a square seat [image: ]), r is the radius of gyration (for a square seat [image: ]),
is the total height of the isolator (rubber and steel tr ), and  is the total height of rubber.


Seismic Input

   In this study, 29 earthquake acceleration records with considerable vertical components were selected from [21]. Specifications of the accelerograms applied in this study are given in Table 2.




Table 2 :List of ground motion records.
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All ground motion records were scaled to fit the local spectrum and regulations as specified by ASCE (American Society of Civil Engineers, Seismic Evaluation of Existing Buildings, 2014) [22]. To maintain a fixed maximum vertical to
horizontal acceleration ratio, this ratio was also multiplied by the vertical accelerations. Figure 8 show the scaled combined horizontal spectra and vertical spectra, respectively.



[image: ]

Figure 8:  Combination spectra of horizontal components and Vertical spectra.

 





Validation
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Figure 9:   Hysteresis curves for the isolator element on the pier.

 


	

   As can be seen, the differences between force and displacement values obtained from the model and analysis are reasonably small and can verify the validity of the model. Figures 9 & 10 show the force-displacement curves of the isolators seated on the base and the abutment, which  were  obtained from numerical analysis of the bridge subjected to the Imperial Valley-06 (Bonds corner) ground motions applied along its transverse direction. The yield displacement and isolator shear force are also shown in the Figure. The validity of the modeled isolator was verified by comparing the response with the input data. The input yield displacement (dy), initial stiffness (Ki), and
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Figure 10:  Hysteresis curves for isolator element on the abutment

 



sliding force (Fy) values and the analysis results are given in Table 3. Since design and input data, were determined by assuming a constant friction coefficient, validation was performed using the Coulomb friction coefficient.



The [image: ]  ratio of Ki , dy  and Fy  for the isolator on the pier is 1 , 0.97 and 0.98, respectively. The corresponding values for
the isolator on the abutment is 1. An acceptable performance of the numerical analysis is observed in the analysis results shown in Table 3.




Table 3 : Specification of isolators on the middle pier and abutments. 
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Results of Numerical Analysis

Modal analysis

   Modal analysis was performed and the natural dynamic characteristics of the structure were calculated. The first three natural periods of the structure are presented in Table 4.





Table 4 :The first three natural period of the bridge structure.
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Nonlinear time history analysis

The effect of vertical seismic component on the base isolated bridge was investigated by computing the maximum response under two following conditions:


 
i. 1-Under   only   two   horizontal   seismic   components (without the vertical component)

ii. Under the three seismic components (two horizontal and vertical)

   At each stage, the maximum  response  parameters  under the above-mentioned condition were calculated and the effects of presence of vertical component on the response values were
measured by the parameter αR , which is defined as:


[image: ]


Where,  R3Dis the maximum response obtained from time history analysis in the presence of vertical component and  R2D is  the  corresponding  maximum  response  in  the  absence  of vertical component are listed in Table 5. 

vertical component. The response parameters evaluated under




Table 5 :Definitionof αR  for each of response parameters.
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 The isolators on the abutment and deck have been indicated by Iso-A and Iso-B, in Figure 3, respectively. In the following the results for each response parameter have been discussed. In
addition, summary of response parameters has been presented in Table 6.




Table 6:A summary of response parameters resulted from analysis.
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Effect of Vertical Seismic Component on the Isolator
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Figure 11:    Shear  force  of  isolator  under  2D  (solid  line)  and  3D  (dashed) input cases (Northridge01-Rinaldi-1994).
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Figure 12:   Shear  force  of  isolator  under  2D  (solid  line)  and  3D  (dashed) input cases (Northridge01-Rinaldi-1994).
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Figure 13:   Force-displacement of isolators on pier under 2D (solid line, red) and 3D (dashed, blue) input.

 

	
The increase in the maximum values  of  the  shear  force and relative displacement of the isolators under each seismic excitation as α F-Iso-P and α D-Iso-P are presented in Table
6. The time history diagrams of shear force and relative displacement of the isolator on the pier under the Northridge 01 (Rinaldi-1994) and Kobe-Japan (Nishi Akashi-1995) ground motions are shown in Figure 11 & 12.

  
 According to Table 6, under all ground motions, the presence of vertical seismic component increases the maximum shear force. Thus, ignoring the vertical seismic component in the analysis means utter disregard to the increase in the isolator's shear force, which may reach as high as 50% under a ground motion similar to Northridge-01 (Rinaldi). The results obtained under a number of ground motions also show an increase in the maximum relative displacement after introducing the vertical seismic component. The most severe case in this regard is the 23% increase in this response parameter under the Kobe (Nishi- Akashi) ground motions.


   For better evaluation of isolation performance, the force- displacement graphs of base isolators on the pier subjected to four different earthquake records are presented in Figure 13. As can be observed, the presence of vertical seismic component is generally similar, but sometimes the presence of vertical seismic component has caused a significant increase or decrease in the shear force. This change in shear force is due to momentary changes in the friction coefficient and axial force. This is induced by variation of vertical acceleration. In the presence of vertical seismic component, axial force of the base isolator undergoes wide-range changes. For example, the minimum and maximum
axial forces obtained under the Gazil-Karakyr-1976 ground motions are 25KN and 3,035KN. The response values under Northridge-01-Rinaldi-1994  earthquake  record  are  273KN and 3,026KN, respectively. These Figures indicate a 120 times increase in axial force under the former ground motions and an 11 times increase in this force under the latter case, which are all reflected in the occasionally erratic changes in the plots of Figure 13 & 13. Figure 13 also shows a permanent displacement in the isolator under the Northridge-01-Rinaldi ground motion, which is evident from its curve moving rightward.


   Comparing the maximum shear force of the base isolator under the 3D ground excitation with the design sliding force. Table 3 shows that under the Northridge-01-Rinaldi ground motions, the maximum actual shear force in the isolator exceeds the sliding force considered for the isolator in the design. For the isolators resting on the abutment, the calculated maximum shear force in all earthquakes except Manjil-Iran exceed the design value. This reflects the greater magnitude of the force transferred from the superstructure to the substructure and the force at which the deck slides over the isolators compared with the values considered in the design.


   As mentioned in the introduction of AASHTO (2010), the vertical seismic component is ignored in design process. To investigate the effect of vertical seismic component on  axial force of isolators, the change of this force due to introducing the vertical component is calculated. The α-N-F-Pier and α-N-F- Abu parameters for the isolators seated on the mid-span base and the abutments are shown in Table 6.
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Figure 14:  The time history diagrams of deck displacement both in absence (solid line, red) and presence (dashed, blue) of vertical component.

 


As shown in Table 6, introducing the vertical components of  earthquake have made significant changes in the axial force. This doubling of the axial force in isolators indicates the possibility of 
buckling-induced instability of devices. The parameter then must be  controlled  according  to  Equation  5.  It  can  be  observed  that  
α-N-F-Pier  parameter  reaches  about  107%  in  Nahani,  Canada  earthquake. α-N-F-Abu  also  increased  to  113%  in  Gazli,  USSR  earthquake.  To  demonstrate  the  effect  of  vertical  component  
of  earthquakes  on  the  lateral  and  permanent  displacement  of  the  deck,  the  time  history  diagrams  of  deck  displacement  both  in  absence  and  presence  of  vertical  seismic  component  of  four  
ground  motions  are  plotted  in  Figure 14.  Appearance  of  larger  residual  displacement  when  the  vertical  component  is  applied,  
can  be  observed  at  the  end  of  displacement  time  histories  in  these Figures. Considering the flexible behavior and partly-irreversible    displacement    of    friction-rubber    isolators,    the    
maximum horizontal displacement and permanent displacement of  the  deck  in  the  absence  and  presence  of  vertical  seismic  component  were  investigated.  The  results  obtained  from  this  
investigation are presented in Table 6.


According  to  the  data  Table 6,  shows  an  increase  of  both  permanent   and   transient   deck   displacement   in   some   case.   
This  means  that,  absence  of  vertical  seismic  component  in  the  analysis  may  result  in  underestimating  the  horizontal  and  
permanent displacement of the deck. Comparing the values of α D-Iso-P and α Dis-Deck shows that presence of vertical seismic component affects the deck displacement more strongly than it 
does the relative displacement of isolator. The results show that introducing  the  vertical  seismic  component  of  Northridge-06  (Tarzana)  ground  motions  has  increased  the  deck  maximum  
lateral  displacement  by  22%,  while  introducing  the  vertical  seismic   component   of   Kobe-Japan   (Takarazuka)   earthquake   has  increased  the  deck  permanent  displacement  by  more  than  2000%. A significant sliding in the bridge deck also can be 
observed at the moments of sharp increase in the vertical seismic component (which usually coincides with a sharp increase in the horizontal acceleration). Due to absence of any self-restoration mechanism  in  the  sliding  part  of  the  device,  such  earthquake-
induced  displacements  are  permanent.  For  example,  Figure  14  shows  that  the  maximum  permanent  displacement  induced  by  the  Northridge-01  (Tarzana)  ground  motion  is  about  40  cm,  
which undermines the post-earthquake serviceability and utility of the bridge.


Spectral Analysis and Correlation of Data 

The  natural  vibration  mode  with  a  significant  effect  on vertical direction was identified. The correlation of the response 
parameters  with  the  spectral  values  of  vertical  ground  motion  component at the period of this significant mode was evaluated. The  response  spectra  of  vertical  component  of  all  29  ground  
motion were already depicted in Figure 8. The effective vibration mode of the model in vertical direction is the sixth mode with a period  of  T6=0.15  sec.  The  spectral  acceleration  at    =0.15  sec  
(Sa-0.15 )  obtained  under  29  ground  motions  are  given  in  Table  7.  The  αN  for  the  axial  force  of  the  isolators  on  the  pier  and  
abutment,  as  a  result  of  changes  in Sa-0.15 are  show  in  Figure 15 & 16, respectively.


A  linear  regression  can  be  reasonably  applied  to  the  data.  Having  the  resulted  regression  equations  and  Equation  6,  the  
result  of  response  parameters  including  the  effects  of  vertical  motion can be estimated.





Table 7 :The vertical spectral acceleration at  T6=0.15 sec.
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Figure 15:  αN-F-Pie Vs. Sa-0.15 .
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Figure 16:  αN-F-Abu Vs. Sa-0.15.

 


   
Conclusion


   Despite the significant effect of vertical seismic component on the performance of isolation  systems  and  structures located in near-fault areas, some of the design guidelines and regulations ignore the effect of this component on the base isolated structures. In this study, AASHTO (2010) guidelines were used to design a friction-rubber isolation system for a 51m long two-span highway bridge. The structure was modeled in the OpenSees software. The method developed by Dao was then used to ensure the accurate modeling of friction coefficient changes versus the changes in vertical force and sliding velocity. To investigate the effect of vertical seismic component on the base isolated bridge, deck permanent and transient displacement and axial force demand on the isolator device was investigated. The analysis under 29 seismic excitations with significant vertical components once with isolator and again without isolator was performed.

   The results obtained from the analysis are concluded as follows:

   


Ignoring the vertical seismic component in the analysis means potentially ignoring up to 50% increase in the maximum shear force.

   As observed in Table 3, when introduced to the model, vertical seismic component caused the shear force to exceed the values specified in the isolator design guidelines. This means the force that will be transferred from the superstructure to the substructure and the force at which the deck may slide over the isolators may be greater than the design values.

   The force-displacement curves obtained once in the absence and again in the presence of vertical seismic component, occasionally exhibit some differences due to momentary but considerable changes in the friction coefficient or axial force.

   Vertical component of all tested ground motions increased the axial force of isolator, sometime by up to 100 percent. The magnitude of increase highlights the importance of incorporating the effect of vertical seismic component into the isolator design. Despite the significant increase in the maximum axial force, isolator models in this study showed no sign of buckling.

   Introducing the vertical component of ground motion records in some cases increased the relative displacement of the isolators and horizontal permanent and transient displacement of the deck.



The axial  forces of isolators were found to be  correlated with their corresponding spectral acceleration of vertical acceleration component and a correlation relationship was derived accordingly for the system under study.
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No. Earthquake aP-osi-F aP-osi-D areiP-F-N aubA-F-N akceD-siD akceD-siD-eR
1 Duze,Turkey (Bolu) 5.8 0.2 13:2 16 0.9 1.6
2 Duze, Turkey (Lamont 6 29 15.7 17.8 33 95

375)
3 Gazli, USSR 29.8 1:5 102.4 14°3:2 2.1 0.5
4 Imperial (Bonds Corner) 6.4 -1.1 24 25 -0.5 -0.5
5 Imperial (El Centro #8) 6.7 0.2 20.3 22.5 8.1 -1.7
6 Kobe, Japan(Nishi- 2053 2238 483 49,9 19.9 54.3

Akashi)

Kobe,
7 i 12T 19 38.4 415 185 2037
8 Landers 113 12.2 28 28 11.4 39
9 Loma Prieta (Corralitos) 16.5 -8.2 47.3 49.5 -6.7 -33.1

10 Loma Prieta (LGPC) 13.86 -5.7 58.4 61.2 -6 -8.7

11 Mammoth Lakes 0.01 0.004 6.1 6.1 0 0.08

12 Manyjil, Iran 16.1 13.9 67 73.2 113 -45

13 Morgan Hill 2.2 9.3 29:2 36.4 8.98 10

14 3. Ealur - pries(Hioth 1.6 438 211 223 4.62 5.3

Palm)
N. Palm

15 sEE s 8.1 -7.6 47.5 47.2 -8.7 -9

16 Nahanni, Canada 21.5 -7.7 107.1 1075 -11.9 -5.1

17 s i 5.4 -0.4 33.2 37 £ it

Hills)
18 Northridge-01 (Castaic) 0.15 -0.5 17:6 18.8 -0.1 -0.2
Northridge-01
19 (Newhall) 21.4 -13.3 61.4 63.3 -14.3 -56
ChiChi-Taiwan
20 (CHY028) 6.6 37 179 179 3.7 -12.2
21 HerthadeeUt{Pardee= 10.6 3.6 37.7 417 3.4 43
SCE)

22 Northridge-01 (Rinaldi) 50 75 97 104.9 7.5 12.2

23 Northridge-01 (Santa) 6.6 -3.7 18 20.2 -3.6 -4.1

24 Northridge-01 (Simi) 115 6.1 235 25.6 59 -90.5
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No. Earthquake Sa—o.ls ( iz )
1 Duze,Turkey(Bolu) 0.46
2 Duze, Turkey(Lamont 375) 0.43
3 Gazli, USSR 1.8
4 Imperial (Bonds Corner) 0.83
S Imperial (El Centro #8) 0.59
6 Kobe, Japan(Nishi-Akashi) 0.71
7 Kobe, Japan(Takarazuka) 0.91
8 Landers 0.82
9 Loma Prieta (Corralitos) 0.7
10 Loma Prieta (LGPC) 1.14
14 Mammoth Lakes 0.13
1.2 Manjil, Iran 1.34
13 Morgan Hill 0.73
14 N. Palm Springs(Noth Palm) 0.61
15 N. Palm Springs(Whitewater) 1.37
16 Nahanni, Canada 1.24
17. Northridge-01 (Beverly Hills) 0.78
18 Northridge-01 (Castaic) 0.49
19 Northridge-01 (Newhall) 1.07

20 ChiChi-Taiwan (CHY028) 0.4

21 Northridge-01 (Pardee-SCE) 0.9

22 Northridge-01 (Rinaldi) 197

23 Northridge-01 (Santa) 0.47

24 Northridge-01 (Simi) 0.72

25 Northridge-01 (Sylmar) B

26 Northridge-01 (Tarzana) 1.65

27 Northridge-06 1:32

28 ChiChi-Taiwan (CHY029) 0.3

29 San Salvador 1
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25 Northridge-01 (Sylmar) 18.3 5.7 43 48.3 5.4 121.6
26 Norshridge-Gl 27.7 16.1 55.3 64.7 16 34.4
(Tarzana)
27 Northridge-06 33 15 61.5 65.4 22 35
ChiChi-Taiwan
28 (CHY029) 19 -4.8 133 12:5 -5.4 -14.1
29 San Salvador 17.8 -1.2 ar 41.4 -0.7 11.5
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(c) Northridge-06-Rinaldi -1994.

(d) Gazil-Karakyr-1976.
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19 Northridge-01 (Newhall) 1994 Newhall-Fire Station 6.7 5.92 D 0.59
20 ChiChi-Taiwan (CHY028) 1999 CHY028 7.6 3.14 G 0.79
21 Northridge-01 (Pardee-SCE) 1994 Pardee-SCE 6.7 7.46 D 0.52
22 Northridge-01 (Rinaldi) 1994 Rinaldi Receiving Station 6.7 6.5 D 0.63
23 Northridge-01 (Santa) 1994 Santa Monica City Hall 6.7 16.45 D 0:57
24 Northridge-01 (Simi) 1994 Simi Valley-Katherine Rd 6.7 13.42 & 0.75
25 Northridge-01 (Sylmar) 1994 Sylmar-Olive View Med FF 6.7 5.3 € 0.71
26 Northridge-01 (Tarzana) 1994 Tarzana-Cedar Hill A 6.7 15.6 D 1.33
27 Northridge-06 1994 Rinaldi Receiving Station 5:3 5.54 D 0.53
28 ChiChi-Taiwan (CHY029) 1999 CHY029 7.6 10.97 C 0.26
29 San Salvador 1986 Geotech Investig Center 5.8 6.3 C 0.54
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Distance

No. Earthquake Year Station M, (Km) Site Class | PGA (g)
1 Duze,Turkey(Bolu) 1999 Bolu 71 12.04 D 0.71
2 Duze, Turkey(Lamont 375) 1999 Lamont 375 71 3.93 C 0.66
3 Gazli, USSR 1976 Karakyr 6.8 5.46 G 0.68
4 Imperial (Bonds Corner) 1979 Bonds Corner 6.5 2.68 D 0:52
5 Imperial (El Centro #8) 1979 El Centro Array #8 6.5 3.86 D 0.51
6 Kobe, Japan(Nishi-Akashi) 1995 Nishi-Akashi 6.9 7.08 C 0.69
7 Kobe, Japan(Takarazuka) 1995 Takarazuka 6.9 0.27 D 0.76
8 Landers 1992 Lucerne 73 2.19 C 0.56
9 Loma Prieta (Corralitos) 1989 Corralitos 6.9 3.85 6 0.58

10 Loma Prieta (LGPC) 1989 LGPC 6.9 3.88 C 0.71

11 Mammoth Lakes 1980 Long Valley Dam 59 14.04 D 0.61

12 Manyjil, Iran 1990 Abbar 7.4 10 C 0.51

13 Morgan Hill 1984 Coyote Lake Dam _SW Abut_ 6.2 0.53 G 0.96

14 N. Palm Springs(Noth Palm) 1986 North Palm Springs 6.1 4.04 D 0.64

15 N. Palm Springs(Whitewater) 1986 Whitewater Trout Farm 6.1 6.04 D 0.55

16 Nahanni, Canada 1985 Site 1 6.8 9.6 C 1.04

17 Northridge-01 (Beverly Hills) 1994 Beverly Hills-12520 Mulhol 6.7 18.36 C 0.52

18 Northridge-01 (Castaic) 1994 Castaic-0ld Ridge Route 6.7 19.72 c 0.54
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Ki (N/m) dy (m) Fy (N)
Input Result I/R Input Result I/R Input Result I/R
Isolators on pier 7453628 7453628 1 0.02 0.0205 0.97 149072.6 150604 0.98
Isolators on abutments 2255500 2255500 1 0.02 0.02 1 45110 45016.3 1
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Mode No T(sec)
1 1.03
2 0.99
3 0.84
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aP-osI-F Shear force of the isolator on the middle pier in transverse direction.
aP-osI-D The relative displacement of the isolator on the middle pier in transverse direction.
areiP-N The axial force of the isolator on the pier.
aubA-N The axial force of the isolator on the abutment.

akceD-siD Horizontal displacement of the deck in horizontal direction.

akceD-siD-eR

The residual displacement of the deck in transverse direction.
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Demension(m Ki (N/m
(m) N/m) |
Isolators on pier 0:7*0:7*0:16 7453628 0.02
Isolators on abutments 0.7%0.7*0:16 2255500 0.02
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