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Abstract


In this paper, a long elastic strip plate with collinear cracks at antiplane deformation in the case that each crack tips are joined by thinwalled inclusions deformed according to the known Winkler's model is considered. The uniformly distributed shear forces causing the antiplane deformation of the plate are acting on the horizontal sides of the strip and the edges of cracks are free of inclusions. For convenience in numerical calculation the strip plate is divided to several plates so that each segment has one crack at the center. The solution of the stated problem via Fourier sine transformation is reduced to singular integral equation (SIE), and, consequently, to a system of linear equations. Numerical calculations based on the Gauss Quadratic solution are achieved. For the main characteristics of stated problem, such as the SIF, the crack opening, the shear stresses on the edges of the inclusion, and the shear stresses out-of-crack the obvious equations are obtained and the special cases considered.


Keywords:  Numerical analysis; S.I.F; Tip inclusions; Anti-plane Shear; SIE 






Introduction

In this paper, we calculate the stress distribution state and
S.I.F of the crack tips and dislocations of edges of a long strip elastic rectangular plate (Figure 1). The stress Intensity is essentially decreasing the known strength and durability of structural members and engineering parts. For this reason, the necessity of theoretical investigation of stress concentration zones and the development of  the  methods  which  decrease the stress intensities is occurred. One of these methods was proposed in [1], the edges of linear finite crack of elastic infinite plate at  the  end  areas  are  joined  via  thin-walled  inclusion in the  shape  of  continuously  distributed  linear  and  non- linear deformed springs, meanwhile, the plate is subjected by uniformly distributed tensile remote stress perpendicular to the central line of crack. Taking into account the above-mentioned physical model of inclusions and based on assumptions in [2- 4], the valuable decrease  of  stress  intensity  factors  (SIF)  at the end points of crack can be achieved by the appropriate selection of elastic and geometric characteristics of problem, and this can prevent the crack propagation. Applying Fourier finite sine transformation, the solution of stated problem can be reduced to the solution of singular integral equation (SIE), and, consequently,  via  the  known  method  [5-7],  the  solution of singular integral equations can be reduced to the system of linear equations. For the main characteristics of stated problem, such as the SIF, the crack opening, the shear stresses on the edges of the inclusion, and the shear stresses out-of-crack on the line of its location, the obvious equations are obtained, the special cases are considered and for various materials the decreasing trend of S.I.F based on the various shear modulus were shown.
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Figure 1: Elastic strip plate D1 with collinear cracks at antiplane deformation with inclusions at e tips.






Governing Equation of Boundary Value Problem

Following  the  approach  represented  in  [1]  consider  a prismatic  elastic  body  with  a  rectangular  cross-section  in Cartesian coordinates  Oxyz  occupying an area Ω={-∞≤x≤∞;-h≤y≤h;-∞<z<∞} and possessing a shear modulusG. The prismatic elastic body is rigidly clamped by the vertical edge x=-∞ and x=+∞ and loaded by the shear forces equal to T(x) acting both in positive and in negative directions of  Oz -axis at the horizontal  y=±h. Furthermore, on the symmetry plane y=0 ,  the  body   Ω has  several  through-in-thickness cracks each in a shape of strip with length 2a on plane y=0 and -∞<z<∞ at distances equal to l(a<l/2). The shear forces of  equal  intensities T0(x) are  acting  in  opposite  directions of Oz-axis on the upper(+) and lower (-) areas of edges ωi±={y=±0; l/2-b<xi<l/2+b;-∞<x<∞} (b<a)of the crack. Besides that at the ending areas
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The edges of the crack are joined by the thin-walled
inclusions with the shear modulus G deforming by the Winkler
model. Let's assume that the prismatic body Ω subjected to
the above-mentioned shear forces is in a state of anti plane
deformation in the direction of Oz-axis on the basic plane Oxy
. The main rectangle D1={-∞≤x≤+∞;-h≤y≤h} with several
cracks Ω = {y=0;l/2-a<xi<l/2+a} (0<a<l/2) is cross-section of
the body Ω with the plane located on this plane Oxy (Figure 1).


It is necessary to determine the dislocation density on the
crack edges, SIF, the crack edges opening, the shear contact
stresses on the edges of the inclusion, and the shear stresses
outside the crack on the line of its location. For convenience in
numerical calculation the strip plate is divided to several plates
so that each segment has one crack at the center (Figure 2).
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Figure 2:  Plate D with a central crack at antiplane shear loading and tip inclusions.




Now, let's derive the governing equations of the stated
problem. For this purpose, it must be initially mentioned that
the component uz= w(x,y) in the direction Ox-axis is the
only non- zero component of displacement in the case of antiplane
deformation, and harmonic function in the area D \ω0.
The components of shear stress τxz and τyz are the only nonzero
components of stresses. Therefore, the problem can be
mathematically stated as a boundary value problem in the
following way:
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For of the determination of boundary value problem
(1), the rectangle D is divided by Ox-axis onto upper
D+={0≤x≤l; 0≤y≤h} and lower D-={0≤x≤l; -h≤y≤0} rectangles. The following supporting boundary value problems
are considered for them.
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Where, the sign 𡀜+” and “-” are related to the rectangles D+
and D- , correspondingly


 τ( x) is the unknown fracture shear stress outside the crack
ω0 on the its line.
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Taking into account the symmetry of stated problem with
respect to -axis
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Consequently, the determination of supporting problem
(2) for the rectangle D+ can be considered only. Based on the
reference [8], the above-mentioned problem can be determined
via Fourier finite sine transformation on the variable x .
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Therefore, the Fourier inverse transformation has the
following expression:
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Multiplying by sin(πnx/l) both sides of the differential
equation and the border conditions of (2), and integrating it
from 0 to l , Fourier finite transformation (5) can be applied
to the boundary value problem (2) for D+. The boundary value
problem in Fourier transformations can be obtained after the
simple reductions.
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Where, notation (n =1, 2...) is accepted.
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The boundary value problem (7) can be defined by the
following equation: 
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Therefore, the following equation can be concluded from the
previous one
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The Singular Integral Equation

After some simple transformations and calculations
according to [1] and [9-11] the following equations can be
derived:
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Denoting
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The first integral of  equation (10) for ρ = r is assumed as
a main value of the Cauchy's relations. Meanwhile, Tn(x) and
Un-1(x)  are Chebyshev polynomials of the first and the second
kind, 


Finally, the stress intensity factors at the end points (a1;b1) of
the crack can be expressed by the following equations:
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and through the half of dislocation density on the edges of
the crack 
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Gauss Quadrature Method

Now, as it was mentioned above, the determinative singular
integral equations (S.I.E) (10) can be reduced to a system of
linear equations and following to the approach represented in
[1], the determinative S.I.E (10) can be reduced to the system of
Algebraic linear equations as follows: 
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Where M is an arbitrary natural number, rm and ρp are the
roots of Chebyshev's polynomials of the first kind TM(ρ) and the
second kind UM -1(r) .


The main physical characteristics of the stated problem
can be expressed by the determination of the system of linear
 equations (14). The plate shear stress out of the crack at the
interval y=0,x∈(0,l/2-a)∪(l/2+a,l) can be obtained as
below:
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For the dimensionless crack opening, the following equation
can be obtained (-1≤r≤1);
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For the dimensionless shear stresses on the edges of
inclusion applying  equation (20), the following equation can be
derived 
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Finally, the dimensionless S.I.F  KIII(0) is obtained in the
following way: 
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Where, X0(1) the value is applied through the Lagrange
interpolation coefficients based on Chebyshev's polynomials.
Therefore, solving of the system of linear equations (14), the
main physical characteristics of the stated problem can be
expressed by  equations (15)-(18).


Numerical Calculation

For numerical calculations we consider a special case of the
loading of the rectangular plate. For this case, the crack edges
are free of shear forces, and shear concentrated force acting on
the horizontal sides of rectangular plate:
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Where, δ(x) is a certain Dirac Delta function. In this case
g(r) = 0 , in (11), as well as, with respect to equation (8), the
following equation has been obtained
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Taking into account the above-mentioned consideration, the
function ḟ(∈) can be expressed in the following way [1]:
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And the function f(r) from equation (11) can be obtained in
the following way.
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Figure 3:  Antiplane shear stresses (t) on the edges of inclusions and out-of-crack based on the various shear modulus G0.




It is obvious that the function ω0(r) with respect to the
symmetry of line x =l/ 2 in this special case, and, consequently,
the function X0(r) according from equation (14) are odd
functions, therefore, the components of the second integrals
in equations (10) and (15) containing polynomials r or t in arguments tend to zero, so that, the above-mentioned equations
and the kernel-matrix Kmp of system of equation (14) are
simplified .and the expressions of functions ḟ(∈) and f(r)
are from equations (20)-(21). The numerical analysis of the
main characteristics of stated problem can be carried out for 
the considered special case. Antiplaine shear stresses τ0(t) on
the edges of inclusions and out of crack based on the various
shear modulus G0 were calculated and shown in (Figure 3) also 
decreasing dislocation of crack edges due to inclusions tip repair
are shown in (Figure 4).
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Figure 4: Decreasing dislocation of crack edges due to inclusion repair at the tips.




Conclusion

Numerical calculations show that the repair of crack tips
causes avoiding the singularities and reduces the anti-plane S.I.F
KIII , about 50 percent, also for strengthen and stop the crack
propagation near to region at the tips, it is not need to use a
material with very high shear rigidity value G0 [12]. Meanwhile
the crack opening C.O.D decreases about 50 percent, and in
addition the shear stresses at the crack tips fall down near to
30 percent.


The linear Algebraic system of equation (14) were solved
regarding to relations  (19)-(21) for the special case of anti-plane
shear loading for several metals on a base metal steel for the
main plate [13]. The shear moduli of the metals over the steel
shear modulus are represented as a ratio on the horizontal axis
in (Figure 5).

The stress intensity factors S.I.F K III that are very important
and show the intensity or index of upper limit of shear stresses
magnitude calculated through the equation (18) that are shown
in (Figure 5), which presents the decreasing trend of S.I.F curve
when the ratio of k=G0/G goes up. It also shows that the crack
tip repairing by adding another material at the tips to prevent
crack propagation, can reduce the S.I.F about 50 percent, means
this approach is very effective to avoid the crack propagations
in cracked plates, mathematically is a treatment for well-known
singularities at the crack tips, defects and holes.
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Figure 5:  Curve of decreasing S.I.F for various inclusion materials at the crack tips on the base metal steel.
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