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Abstract


This  article  outlines  a  concise  and  complete  versatile  novel  analytical  framework  to  quickly  and  effectively  assess  lateral  shear  (knik)  
and lateral torsional buckling (kip) of composite beams build of sections with different lengths. The adjective “composite” includes dissimilar 
beam cross-sections (beam profiles) and distinct beam materials. The major aim is to provide engineers with an accurate, simple but elegant, 
practically applicable and analytical beam buckling tool based on advanced solid theoretical propositions or background. The justification of the 
analytical theory is supplied by demonstration of executed numerical tests (i.e. finite element method), which affirm the validity of the proposed 
analytical buckling models adapted to the considered beam buckling cases.
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Introduction



Buckling   means   the   loss   of   stability   of   an   equilibrium   
configuration of a structure. Elastic buckling is a state at which 
the structure loses its stability and large elastic deflections 
will  start  developing  rapidly.  It  is  normally  associated  with  the  
minimum eigen value of the perfect structure, i.e. often referred 
to as classical buckling [1]. In this article attention is confined 
to linear elastic composite beam buckling (especially lateral and 
lateral torsional buckling phenomena). An abbreviated and lucid 
literature  survey  and  comprehensive  discussion  about  lateral  
and lateral torsional buckling of structural members is rendered 
in the dissertation of Raven [2] and the article of Vander Put [3]. 
It should be highlighted that the adjective “composite” refers to 
multiple beam cross-sections and beam materials.

Approximate  solution  methods  are  frequently  encountered  
and   used   in   engineering   design   practice   for   tackling   beam   
buckling problems. In particular, summation theorems (i.e. Föppl 
Papkovich theorem) are appropriate and advantageous because 
of  their  robustness,  accuracy,  easiness  and  algebraic  simplicity  
[4]. It should be kept in mind that there is similarity or analogy 
with parallel and serial analytical approaches of spring systems, 
electric systems or hydraulic systems (the so-called analogies).

The   key   goal   of   this   article   is   to   address   respectively   
formulate  an  effective  analytical  tool  for  reliable  (engineering)  
estimation  or  approximation  of  the  linear  elastic  lateral  shear  
buckling   force   and   linear   elastic   lateral   torsional   buckling   
moment  of  composite  beams  made  of  non-overlapping  parts  
based on the indicated summation theorem and corresponding 
well-established   structural   elastic   stability   notions   [5].   A   
succinct  but  detailed  exposition  of  the  previous  stated  matters  
and issues is offered in the subsequent sections.

Preliminaries and Requisites

Global   Cartesian   (   components)   and   local   Cartesian   (      
components)  right-handed  coordinate  systems  are  used.  The  
former identify the composite beam orientation, beam location 
and  beam  external  loads,  while  the  latter  define  attached 
geometrical  (shape  and  size)  properties  of  the  homogenous  
beam  cross-sections.  It  is  henceforth  assumed  that  the  origin  
of  the  local  coordinate  system  is  located  at  the  centroid  C  of  
the  cross-sectional  area.  In  addition,  the  initial  (undeformed)  
geometry of the composite beam is a straight line. The following 
beams cross sectional quantities (properties) are employed [6].


[image: ]


Where,

A is the cross sectional area,

[image: ]  are called second moments of area.
Where, [image: ] is the torsion constant.

Note 1: The centroid C is defined as that point of an area A for 
which the static moments of area are zero when the origin of the 
local xyz coordinate system is chosen there, i.e. 


[image: ]


The normal centre NC is specified as that point of the cross-
sectional area where the resultant of all normal stresses due to 
extension has its point of application.

Note 2: In a homogenous (single material) cross-section, the 
centroid C and normal centre NC coincide.

Note 3: The adopted assumption [image: ]  implies that the 
selected beam cross section has at least two lines of symmetry.

Note 4:[image: ]  are commonly indicated as the moments 
of inertia and [image: ]   are known as the product of inertia. The 
Equations (1) have been applied to the cross-sections in Figure  1. The results are Shown below.




[image: ]

Figure 1:  Beam cross sections.

 

Rectangular cross-section:[image: ]

Solid circular cross-section:[image: ]

Hollow circular cross-section:
[image: ]

I cross-section: [image: ]

Where,

A is the area of the cross-section,

E is the modulus of elasticity or Young's modulus,

[image: ] is the bending stiffness in the x y plane,

[image: ]Is the bending stiffness in the x z plane.

[image: ] is the shear modulus,

v is the lateral contraction coefficient or Poisson's ratio,

GIt is the torsional stiffness.

Linear    elastic    lateral    buckling    (including    shear    
deformation) (knik)

Model geometry

The  typical  model  geometry  is  depicted  in  Figure  2.  The  
following    mechanical    boundary    (displacement    and    load)    
conditions are implemented (prescribed).


[image: ]

Figure 2:   Coordinate systems and boundary conditions of the lateral buckling model.

 

Boundary 1:[image: ] (applied at centroid) 

Boundary 2:  [image: ] (applied at centroid)

Note  1:  A  set  of  balanced  forces  is  obligatory  in  order  to  
preserve  equilibrium  of  the  composite  beam  in  the  analytical  
model configuration.

Note  2:  The  prescribed  boundary  displacement  constraints  
prevent  rigid  body  motions  (circumvent  singularities  in  the  
numerical (finite element) solution process).

Analytical model

The composite beam with length L is made of segments i with corresponding length  [image: ]  
(Figure  3%) and each segment (section) i  has  the  accompanying  attributes  Young's  modulus [image: ] shear  
modulus  [image: ],shear deformation coefficient [image: ]   [7,8]  cross-
section area [image: ] and second moment of area [image: ]   Furthermore, 
the cross-section of each segment i fulfils the condition [image: ], which implies that [image: ]  Consequently, the following relation 
holds.




[image: ]

Figure 3:   Composite model geometry.

 


[image: ]

The engineering estimate of the buckling length [image: ]     of  
segment i is given by the expression

[image: ]

Where,

[image: ]     Is  the  buckling  length  factor,  which  is  identical  for  
each segment in the particular composite beam arrangement. 

[image: ]


Where,

[image: ]   Is  the  buckling  length  factor  of  the  composite  beam,  
dependent  on  the  mechanical  boundary  conditions  (supports).  
In this specific case of a composite beam with span L and 
supported by two hinges at the edges [image: ]

  It  is  emphasized  that  the  buckling  length  of  the  composite  
beam  depends  only  on  the  boundary  conditions  and  thus  not  
on  cross-sectional  properties.  Substitution  of  Equation  4  into  
Equation 3 produces the following identity.

[image: ]

Subsequently, the linear elastic lateral shear buckling force [image: ] of segment i is universally elaborated as shown in Equation 6a.  Note  that  shear  deformation  is  also  incorporated,  see  [5],  
(Timoshenko 1985). 

[image: ]



[image: ]   Is  the  linear  elastic  lateral  shear  buckling  force  of  
segment i, 

[image: ] Is   the   linear   elastic   lateral   buckling   force   of   
segment i, 

[image: ]


[image: ] Is the linear elastic shear buckling force of segment i.

[image: ]

Recalling from literature that the Föppl-Papkovich theorem 
(Tarnai  1995)  is  valid  for  this  case,  the  following  lateral  shear  
buckling system force equation is stated in general format.

[image: ]


[image: ]   Is  the  linear  elastic  lateral  shear  buckling  force  of  the  composite  beam  (also  denoted  as  system),nIs  the  total  number of considered segments.


The  aforementioned  formulae  devise  the  complete  linear  
elastic lateral shear buckling analytical model.

Numerical verification (case studies) knik

Three   case   studies   (KNIK   1,   KNIK   2   and   KNIK   3)   are   
conducted  and  concisely  presented  in  order  to  examine  the  
validity  and  soundness  of  the  proposed  analytical  approach  
by comparison with numerical results obtained by the finite 
element method [9,10].


Case study KNIK 1-1

Case  KNIK  1-1  considers  a  wooden  beam  of  one  segment  (Figure  4).

The properties are [image: ] [image: ]


[image: ]

The obtained results are [image: ] [image: ] (Figure  5).

The deviation is computed as [image: ]



[image: ]

Figure:   4&5

 

Case study KNIK 1-2

Case  KNIK  1-2  considers  a  composite  wooden  beam  of  two  
segments (Figure  6%). 

The properties are [image: ] [image: ]

[image: ]

[image: ]


The results are [image: ] (Figure  7). The deviation is -13, 74 %.

Case study KNIK 1-3



[image: ]

Figure:  6&7

 


Case KNIK 1-3 considers a composite wooden beam of three 
segments (Figure  8).

The properties are L = 3000 mm, L1 = 1000 mm, L2 = 1000 
mm, L3 = 1000 mm,

[image: ]

[image: ]


The results are [image: ] (Figure  9). The deviation is +3, 11 %.



[image: ]

Figure:   8&9

 


Case Study KNIK 2-1

Case KNIK 2-1 considers a steel beam of one segment (Figure  10).

The properties are L = 3000 mm, L1 = 3000 mm, [image: ] [image: ]


[image: ]

The obtained results are [image: ] and [image: ]  (Figure  11). 




[image: ]

Figure:   10&11

 


The deviation is -0,539 %.

Case Study KNIK 2-2

Case  KNIK  2-2  considers  a  composite  steel  beam  of  two  
segments (Figure  12). 

The properties are L = 3000 mm, L1 = 1500 mm, L2 = 1500 
mm, [image: ]

[image: ]

The results are [image: ]147745N (Figure  13) the deviation is -6,346%.



[image: ]

Figure:  12&13

 


Case Study KNIK 2-3

Case   KNIK   2-3   considers   a   composite   steel   beam   of   3   segments (Figure  14).

The properties are L = 3000 mm, L1 = 1000 mm, L2 = 1000 mm, L3 = 1000 mm,

[image: ]

[image: ]

The results are [image: ]48983N (Figure  15). The deviation is +4,165 %.





[image: ]

Figure:  14&15

 




[image: ]

Figure:  16&17

 





Case Study KNIK 3-3

Case  KNIK  3-3  considers  a  composite  steel-wood  beam  of  
three segments (Figure  16). 

The properties are L = 3000 mm, L1 = 1000 mm, L2 = 1000 
mm, L3 = 1000 mm,

[image: ]

[image: ]


The  results  are      =  166  N  and    =  171  N  (Figure  17).  The  
deviation is +3,012 %.

Linear elastic lateral torsional buckling (kip)

Model geometry

The   governing   model   geometry   is   shown   in   Figure   18.   
The  following  mechanical  boundary  (displacement  and  load)  
conditions are implemented (prescribed).

Boundary 1:[image: ] (applied  at  centroid).

Boundary 2:[image: ] [image: ](applied at centroid).




[image: ]

Figure 18:   Coordinate systems and boundary conditions of the lateral torsional buckling model.

 

Analytical model


The  model  for  lateral  torsional  buckling  is  mostly  identical  
to  the  models  for  lateral  buckling  (Section  7.2).  Not  used  in  
lateral torsional buckling is the shear deformation coefficient [image: ]  Extra is the is the torsional constant [image: ] The cross-sectional 
warping  stiffness  of  segment  i  is  assumed  to  be  negligible.  The  
engineering estimate of the buckling length [image: ]  of segment i is

[image: ]

Where,


[image: ] Is the buckling length factor. Which, is the same for each 
segment in the specific composite beam configuration

[image: ]

Where, 


[image: ] Is  the  buckling  length  factor  of  the  composite  beam,  
dependent on the mechanical boundary conditions (support). In 
this specific case of a composite beam with span L and supported 
by two forks at the edges: 


[image: ]


It  is  underlined  that  the  buckling  length  of  the  composite  
beam is only dependent on the boundary conditions and hence 
not on cross-sectional properties. Substitution of Equation 9 in 
Equation 8 produces the following identity.

[image: ]

Taking  into  account  the  previous  settled  propositions,  the  
linear elastic lateral torsional buckling moment [image: ]  of segment 
i is 


[image: ]

The  Föppl-Papkovich  theorem  (Tarnai  1995)  is  apt  for  this  
case.  The  following  lateral  torsional  buckling  system  moment  
equation is written in universal layout.


Where,  
        
[image: ]


[image: ] Is the linear elastic lateral torsional buckling moment 
of the composite beam (also symbolized as system). 

n is the total number of segments.

The aforesaid procedure details the full linear elastic lateral 
torsional buckling analytical model.


Numerical verification (case studies) kip

Three case studies (KIP 1, KIP 2 and KIP 3) are consecutively 
undertaken  and  compendiously  offered  in  order  to  inspect  the  
legality  or  reliability  of  the  analytical  approach  by  judgment  of  
numerical results.


Case study KIP 1-1

Case  KIP  1-1  considers  a  wooden  beam  of  one  segment  
(Figure  19%).


The properties are L = 3000 mm, L1 = 3000 mm, [image: ] [image: ]

[image: ]

 The results are [image: ]= 0,149·108 Nmm (Figure  20).

The deviation is computed with  [image: ]



[image: ]

Figure:  18 & 19

 


Case study KIP 1-2

Case  KIP  1-2  considers  a  composite  wooden  beam  of  two  
segments (Figure  21%). 

The properties are L = 3000 mm, L1 = 1500 mm, L2 = 1500 
mm, [image: ]

[image: ]

The results are [image: ]=0,176·107Nmm (Figure  22).




[image: ]

Figure:  20 & 21

 




[image: ]

Figure:  23 & 24

 


The deviation is +0, 57%.

Case study KIP 1-3

Case  KIP  2-3  considers  a  composite  wooden  beam  of  three  
segments (Figure  23%).

The properties are L = 3000 mm, L1 = 1000 mm, L2 = 1000 
mm, L3 = 1000 mm,  [image: ]

[image: ]

[image: ]

The results are [image: ]164801 Nmm (Figure  24). 

The deviation is +0, 67 %.

Case study KIP 2-1

Case KIP 2-1 considers a steel beam of one segment (Figure  25%).

The properties are L = 3000 mm, L1 = 3000 mm,[image: ] [image: ]

[image: ]

 The obtained results are  [image: ] [image: ](Figure  26%).




[image: ]

Figure:   25 & 26

 

The deviation is +0,053 %.

Case study KIP 2-2

Case  KIP  2-2  considers  a  composite  steel  beam  of  two  
segments (Figure  27%). 

The properties are L = 3000 mm, L1 = 1500 mm, L2 = 1500 
mm,[image: ] 


[image: ]

The results are [image: ] = 19, 2·106 Nmm (Figure  28). 



[image: ]

Figure:   27 & 28

 



[image: ]

Figure: 29 & 30

 


The deviation is -1, 79 %.

Case study KIP 2-3

Case  KIP  2-3  considers  a  composite  steel  beam  of  three  
segments (Figure  29%). 

The properties are L = 3000 mm, L1 = 1000 mm, L2 = 1000 
mm, L3 = 1000 mm, [image: ]


[image: ]



  The results are  = 6, 91·106 Nmm are  = 6, 68·106 Nmm 
(Figure  30%). 

The deviation is -3,328 %.

Case study KIP 3-3

Case  KIP  3-3  considers  a  composite  steel-wood  beam  of  
three segments (Figure  31%). 


The properties are L = 3000 mm, L1 = 1000 mm, L2 = 1000 
mm, L3 = 1000 mm, [image: ]


[image: ]


The results are  = 174324 Nmm and  = 175756 Nmm (Figure 
32). 


The deviation is +0,821 %.




[image: ]

Figure:  31 & 32

 



Conclusion





Numerical  evaluation  confirms  the  correctness  of  the 
presented   linear   elastic   lateral   shear   and   lateral   torsional   
buckling    analytical    models.    The    deviations    between    the    
analytical  and  numerical  approach  are  rather  small  and  reveal  
clearly  the  ability  to  yield  realistic  outcomes.  The  supplied  
analytical  linear  elastic  buckling  models  produce  accurate  and  
reliable values, which can be classified as suitable for engineering 
design  purposes.  Needless  to  cite  that  the  analytical  approach  
should always be cautiously applied and the results ought to be 
methodically  checked  by  the  responsible  structural  engineer.  
A  salient  observation  is  that  the  presented  tactic  could  also  be  
invoked  for  linear  elastic  buckling  assessment  of  castellated  
and  cellular  (steel)  beams.  However,  this  assertion  has  not  yet  
been verified and is thus speculative. Insertion of plasticity is 
straightforward  however  treatment  of  this  topic  is  beyond  the  
scope of this article.
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Figure 27: Geometry of case KIP 2-2.
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Figure 16: Geometry of case KNIK 3-3. Figure 17: Buckling shape of case KNIK 3-3.
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Figure 6: Geometry of case KNIK 1-2. Figure 7: Buckling shape of case KNIK 1-2.
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Figure 8: Geometry of case KNIK 1-
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Figure 31: Geometry of case KIP 3-3.
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Figure 5: Buckling shape of case KNIK.
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Figure 12: Geometry of case KNIK 2-2.
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Figure 10: Geometry of case KNIK 2-1.
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