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			Introduction

			Since the introduction of the exponential autoregressive models (EXPAR) by Ozaki [1] to capture some features of the non-linear vibration theory, several papers discussed their theoretical and practical aspects as Chan and Tong [2], Al-Kassam and Lane[3]; Allal and El Melhaoui [4]; Ghosh, et al. [5]; Azouagh and El Melhaoui [6] and many others and when we have data exhibiting nonlinear behaviour such amplitude dependent frequency and periodic autocovariance structure, it will be suitable to use a periodic version of the EXPAR model. The notion of periodicity due to Gladyshev [7], was exploited to introduce the restricted periodic EXPAR(1) model (PEXPAR) in Merzougui et al. [8] and an optimal test of periodicity is given there, the parameters were estimated by the least squares (LS) method in Merzougui [9] and the test of Student was used for testing the nullity of the coefficients in the application but the problem of testing linearity has not been treated before.

			Nonlinear time series models are generally more complex than linear ones so it is important first to do the linearity test before considering them. In our testing problems the parameter is not at the boundaries of stationarity so the solution is very standard, we choose the Wald test and we begin by testing the coefficients of the restricted PEXPAR(1) model as it is a novel model and then we approach the linearity test. The Wald statistic is defined in the usual way see for example Bierens [10]. It is given by a quadratic form based on the difference between the unrestricted estimated value of the restrictions and their value under the null hypothe

sis. The paper is organized as follows. In section 2, we discuss the model and we remind the asymptotic normality of Least Squares Estimator (LSE) of the parameters and define the Wald test for nullity of one coefficient which is based on the LSE. Section 3 provides a test for linearity after rearranging the parameters.

			Test for the nullity of one coefficient

			Suppose that a time series [image: ] is generated by the restricted PEXPAR(1), with period [image: ]:

			[image: ][image: ]Z, (1)

			Where [image: ] is a Gaussian white noise process with mean 0 and finite variance[image: ] The autoregressive parameters and the innovation variance are periodic, in time, with period S and the nonlinear parameter, [image: ] is known. Putting [image: ]Sr [image: ]and [image: ] one can rewrite equation (1) in a form that emphasize the periodicity:

			[image: ][image: ][image: ]    (2)

			which means that  [image: ]is the value of [image: ]  during the [image: ] season of the cycle [image: ] Figure 1 shows a simulated series and a month plot of the restricted PEXPAR4 (1) model with [image: ] [image: ] and [image: ]The Figure 2 gives the scatterplot which clearly indicates nonlinear behaviour and Figure 3 gives the histogram where we see the non-Gaussian characteristic of the time series, this is confirmed by the Shapiro Wilk test which rejects the normality with a p-value = 2.186e-07.
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			Let[image: ]the parameter vector where [image: ] [image: ]. 

			The problem of estimation is resolved by the LSE method because [image: ] is known so it is a linear optimisation. Under the conditions:

			A1 : The Periodical restricted exponential autoregressive parameters [image: ] satisfy the stationary periodically condition of (1): A sufficient condition is given by [image: ][image: ] [image: ]

			A2: The periodically ergodic process [image: ] is such that [image: ] for any [image: ]It can be shown (see Merzougui, [9]) that the LSE are strongly consistent and we have for [image: ]

			[image: ] (3)

			The asymptotic normality of the LSE in (3) can be exploited to perform tests on the parameters. It is clear from A1 that 0 is an interior point of the parameter space. Let

			[image: ]

			Consider the null hypothesis [image: ] i.e. [image: ]  where  
R= [image: ]  and for some given [image: ]. The usual Wald test rejects [image: ] at the asymptotic level [image: ] when the test statistic is

			[image: ]

			The Wald test looks whether [image: ] is close to 0 and we reject the null hypothesis for large values of [image: ] In application we must replace [image: ]by a consistent estimator. Of course, for the nullity of one coefficient, the test of Student can be used. In the same manner we can test the nullity of [image: ] by taken [image: ]

			Test for linearity in Restricted PEXPAR(1) model

			When [image: ][image: ] the restricted PEXPAR(1) model reduces to the periodic autoregressive model (PARS (1)) of period [image: ] This case corresponds to testing the linearity hypothesis: To reorder the parameters, we introduce the [image: ] matrix [image: ] where

			[image: ]

			where the [image: ] matrices [image: ]and [image: ][image: ] are given, their general elements, as follows:

			[image: ]

			[image: ]

			Then [image: ] We consider testing the nullity of the last S parameters of [image: ] which is split into two components [image: ] where [image: ] The null hypothesis is then

			[image: ] i.e.,  [image: ] vs [image: ] i.e. [image: ]

			Where [image: ] From (3) we have

			[image: ]

			Where

			[image: ]

			and since [image: ] hence,

			[image: ]

			where [image: ] Then the testing problem can be easily solved by a standard Wald test.

			[image: ]

			Where [image: ]is a consistent estimator of [image: ].
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{ Figure 2: Lagplot of the time series.
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Figure 3: Histogram of the time series.
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Figure 1: Simulated series and a monthplot of the Restricted PEXPAR2 (1).
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