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Abstract


Peak ground acceleration (PGA) estimates have been calculated in order to predict the devastation potential resulting from earthquakes
in reconstruction sites. In this research, a training algorithm based on gradient descent were developed and employed by using strong ground
motion records. The Artificial Neural Networks (ANN) algorithm indicated that the fitting between the predicted strong ground motion by the
networks and the observed PGA values were able to yield high correlation coefficients of 0.78 for PGA. We attempt to provide a suitable prediction
of the large acceleration peak from ground gravity acceleration in different areas. Methods are defined by using fuzzy inference systems based on
adaptive networks, feed-forward neural networks (FFBP)by four basic parameters as input variables which influence an earthquake in regional
studied. The affected indices of an earthquake include the moment magnitude, rupture distance, fault mechanism and site class. The ANFIS
network -- with an average error of 0.012 -- is a more precise network than FFBP neural networks. The FFBP network has a mean square error
of 0.017 accordingly. Nonetheless, these two networks can have a suitable estimation of probable acceleration peaks (PGA) in this area.


Keywords:  Adaptive-network-based fuzzy inference systems; Feed-forward back propagation error of a neural network; Peak ground
acceleration; Rupture distance.

Abbreviations:PGA: Peak ground acceleration; ANN: Artificial Neural Networks; FFBP: Feed-Forward Neural Networks; FIS: Fuzzy Inference
System; Mw: Moment Magnitude






Introduction


Peak ground acceleration is a very important factor that must
be considered in any construction site in order to examine the
potential damage that can result from earthquakes. The actual
records by seismometers at nearby stations may be considered
as a basis. But a reliable method of estimation may be useful
for providing more detailed information of the earthquake's
characteristics and motion [1]. The peak ground acceleration
parameter is often estimated by the attenuation of relationships
and also by using regression analysis. PGA is one of the most
important parameters, often analyzed in studies related to
damages caused by earthquakes [2]. It is mostly estimated by
the attenuation of equations and is developed by a regression
analysis of powerful motion data. Powerful motions relating to
a ground have basic effects on the structure of that region [3].
Peak ground acceleration is mostly estimated by attenuation
relationships [4]. The input variables in the constructed artificial
neural network model are the magnitude, the source-to-site
distance and the site's conditions. The output is the PGA. The
generalization capability of ANN algorithms was tested with the
same training data. Results indicated that there is a high
correlation coefficient (R2 )  for the fitting that is between the
predicted PGA values by the networks and those of the observed
ones. Furthermore, comparisons between the correlations by the
ANN and the regression method showed that the ANN approach
performed better than the regression. Developed ANN models
can be conservatively utilized to achieve a better understanding
of the input parameters and their influence, and thus reach PGA
predictions. 


Kerh & Chaw [1] used software calculation techniques
to remove the lack of certainties in declining relations. They
used the mixed gradient training algorithm of Fletcher-Reeves'
back propagation error [5]. They applied three neural network
models with different inputs including epicentric distance,
focal depth and magnitude of the earthquakes. These records
were trained and then the output results were compared with
available nonlinear regression analysis. The comparisons
demonstrated that the present neural network model did have
a better performance than that of the other methods. From a
deterministic point of view, determining the strongest level of
shaking- that can potentially happen at a site- has long been an
important topic in earthquake science. Also, the maximum level
of shaking defines the maximum load which ultimately affects
urban structures. 


From a probabilistic point of view, knowledge of the
greatest ground motions that can possibly occur would allow
a meaningful truncation of the distribution of ground motion
residuals, and thus lead to a reduction in the computed values
pertaining to probabilistic seismic hazard analyses. Particularly,
it points to the low annual frequencies that exceed norms which
are considered for critical facilities [6,7]. Empirical recordings
of ground motions that feature large amplitudes of acceleration
or velocity play a key role in defining the maximum levels of
ground motion, which outline the design of engineering projects,
given the potentially destructive nature of motions. They also
provide valuable insights into the nature of the tails that further
distribute the ground motions. 


Feed-forward, back propagation error in neural
networks


Artificial neural networks are a set of non-linear optimizer
methods which do not need certain mathematical models in
order to solve problems. In regression analysis, PGA is calculated
as a function of earthquake magnitude, distance from the source
of the earthquake to the site under study, local condition of the
site and other characteristics that are linked to the earthquake
source such as slippery length and reverse, normal or wave
propagation. In non-linear regression methods, non-linear
relations which exist between input and output parameters are
expressed as estimations, through statistical calculations within
a specified relationship [8]. One of the most popular neural
networks is the back propagation algorithms. It is particularly
useful for data modeling and the application of predictions [9]
(Equations 1, 2 and 3). It is a supervised learning technique
which was first described by Werbos [10] and further developed
by Rumelhart et al. [11]. Furthermore, its most useful function is
for feed forward neural networks where the information moves
in one direction only, forward, beginning from the input nodes
through to the hidden nodes, and then to the output nodes.
There are no cycles or loops in the network. 
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In (1), one instance of iteration is written for the back
propagation algorithm. Where Xk is a vector of current weights
and biases,  gk is the current gradient and ak is the learning rate. 
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In (2), where F is the performance function of error (mean
square error),'t' is the target and 'a' is the real output
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In (3), 'a' is the net output,(n) is the net input and 'f' is the
activation function of the neuron model.
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In (4), the error of energy is calculated by the least squares
estimate for back-propagation learning algorithm. Where N is
the number of training patterns, m is the number of neurons in
the output layer. And 
tjk is the target value of processing the
neuron. Therefore, this algorithm changes synaptic weights
along with the negative gradient of the error energy function.
Furthermore, it mostly benefits feed-forward neural networks
where the information moves in only one direction, forward,
beginning from the input nodes, through to the hidden nodes,
and then to the output nodes. There are no cycles or loops in
the network. The basic back-propagation algorithm adjusts
the weights in the steepest direction of descent wherein the
performance function decreases most rapidly. This network is
a general figure of a multi-layer Prospectron network with one
or several occasions of connectivity. Theoretically, it can prove
every theorem that can be proven by the feed-forward network.
Also, problems can be solved more accurately by testing general
feed-forward networks.


Results of FFBP neural network
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Figure 1: Testing the output of the feed-forward network against
the true output so as to calculate probable errors of the general
feed-forward network

 


In Figure 1, testing the output of feed-forward neural
networks against the true output is demonstrated. In Figure
2, the correlation coefficient of training, testing and validating
general feed-forward neural networks is shown. In Table 1,
testing the output of a feed-forward network against its true
output has been compared. In Figure 3, training and validating
the error graph against the feed-forward neural network is
shown. Mean square error versus epoch is shown in Figure 4
with the aim of training and checking the general feed-forward 
network. The sensitivity factor was obtained by training the
feed-forward network (Figure 5). The sensitivity factor for input
parameters is shown in Table 2. The performance error function
was obtained by testing the FFBP neural network (Table 3).
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Figure 1:  Training and validating the error graph for feedforward
neural network.

 

Data processing


The datasets of records by large amplitude considered in
this study involves one sets of accelerogram selected based on
their value of PGA. These records are described below in terms
of the variables generally considered to control the behavior
of ground motions in general i.e. Magnitude, Rupture distance,
style of faulting and site classification. The dataset includes
recordings from events with Moment Magnitude ranging from
(5.2-7.7) and rupture distance from (0.3-51.7 km). The SC
values in the models were used as (1 to 5) for S-Wave velocity
(For (1), Vs=1500 m/s and (5) Vs=180m/s). One Model was
developed for each ANN method. This model was developed for
estimation of maximum PGA values of the three components.
The Focal Mechanism values in this model were used as (1 to
5) that (1: Strike Slip, 2:Reverse, 3:Normal, 4:Reverse oblique
and 5: Normal oblique). A program includes MATLAB Neural
Network toolbox was coded to train and test the models for each
ANN method. All recordings from crustal events correspond to
rupture distances shorter than 25km. The horizontal dataset
shows a predominance of records from strike-slip and reverse
earthquakes. Ground motions recorded on early strong-motions
instruments often required a correction to be applied to retrieve
the peak motions, Filtering generally eliminates the highest
frequencies for motions recorded on modern accelerographs,
and thus reduces the observed PGA values. The training of
networks was performed using 60 sets of data. Testing of
networks was done using 14 datasets that were randomely
selected among the whole data. As shown in Figure 6 (a,b), the
Mw and RD values of test and train data varied in the range of
(5.2-7.7) and (0.3-52 km), respectively, the fault mechanism
values were given in the Figure 6c. Figure 6d illustrated the site
conditions of train and test data. As seen in this figure the site
conditions were commonly soft and stiff soil types. Figure 6e
showed the maximum PGA of records of the three components.
In ANFIS model, training and the testing of records are shown
in Figures 7a,b. Final decision surfaces are shown in Figure 7c.
Final quiver surfaces are shown in Figure 7d. 



Table 1: A comparison of testing between the outputs of the feed-forward network against the true output.
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Figure 3:  Correlation coefficient of training (0.85), testing (0.20), validating (0.78) and finally all indices together (0.27) pertaining to the
general feed-forward neural network.
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Figure 4: MSE versus epoch, designed for training and checking
the general feed-forward network.

 




Table 2:The sensitivity factor for input parameters.
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Figure 5:The sensitivity factor was gained from training the
feed-forward network.
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Figure 6a:  Moment Magnitude for recordings
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Figure 6b:  Moment Magnitude for recordings

 




[image: ]

Figure 6c:  Moment Magnitude for recordings

 



Table 3: Performance was obtained from testing the feed-forward
network.
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Figure 6d:  Moment Magnitude for recordings
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Figure 6e:  Moment Magnitude for recordings
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Figure 7a:  Training on input records and the error diagram was
obtained by training of data in ANFIS model.
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Figure 7a:   Testing of data; red stars are FIS outputs and blue
points are input records (ANFIS Model).
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Figure 7a:  Final decision surface for input 1 and input 2 (G-Bell
MFs)
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Figure 7a:  Final Quiver surface after ANFIS training (G-Bell
MFs

 





The fuzzy logic appeared parallel to the growth in evolution
of neural networks theory. The definition of being fuzzy can
be found in human decision-making. These definitions can be
searched by methods related to processing information [12].
ANFIS is one of hybrid neuro-fuzzy inference expert systems
and it works like the Takagi-Sugeno-type fuzzy inference system,
which was developed by Jang [13]. ANFIS has a similar structure
to a multilayer feed-forward neural network, but the links in an
ANFIS can only indicate the flow direction of signals between
nodes. No weights are associated with the links [4]. ANFIS


architecture consists of five layers of nodes. Out of the five
layers, the first and the fourth layers consist of adaptive nodes
while the second, third and fifth layers consist of fixed nodes.
The adaptive nodes are associated with respective parameters,
while the fixed nodes are devoid of any parameters [15-17]. For
simplicity, we assume that the fuzzy inference system under
consideration has two inputs x, y and one output called z.
Supposing that the rule base contains two fuzzy if-then rules(6
and 7) of the Takagi & Sugenos [18], then the type-1 ANFIS
structure can be illustrated as in Figure 6
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Where x and y are the inputs, , A B i i are the fuzzy sets
and i f is the output within the fuzzy region specified by the
fuzzy rule. Then ,i p i q and ir are the design parameters that
are determined during the training process, in which a circle
indicates fixed nodes, whereas a square indicates adaptive
nodes.


The node functions which are in the same layer are of the
same function family as described below:
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Figure 8:   ANFIS model structure (Type 1).

 


In Figure 8, layer (1), every node (i) is a square node with a
node function like this: O1i=(x)μAi  .


The outputs of this layer constitute the fuzzy membership
grade of the inputs, which are presented as: 
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Where x and y are the inputs that enter node (i), A is a
linguistic label and μAi(x),μBi(y) can adapt any fuzzy
membership function.(ai,biand ci are the parameters of the
membership function. As the values of these parameters change,
the bell shaped function varies accordingly. In layer 2 (Figure
8), every node is a circle node labeled ∏. The outputs of
this layer can be presented as a firing strength of rule. In layer
3,every node is a circle node labeled N. The 'ith' node calculates
the ratio of the 'ith' rules' firing strength to the sum of all rules
belonging to the firing strength. For convenience, outputs of
this layer will be termed as normalized firing strengths. In layer
4, the defuzzification layer is an adaptive node with one node.
The output of each node in this layer is simply a first order
polynomial. 
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Where wi is the output of layer 3,{pi,qi,ri} is the parameter
set. Parameters in this layer will be referred to as consequent
parameters. In layer 5,the summation neuron is a fixed node
which computes the overall output as the summation of all
incoming signals. The single node in this layer is a circle node
labeled S that computes the overall output as the summation of
all incoming signals.
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Functionally, there are almost no constraints on the
node functions of an adaptive network except in the case of a
piecewise differentiability. Structurally, the only limitation of
network configuration is that it should be of the feed-forward
type. Due to minimal restrictions, the applications of adaptive
networks are immediate and immense in various areas. In
this section, we propose a class of adaptive networks which
are functionally equivalent to fuzzy inference systems. The
targeted architecture is referred to as ANFIS, which stands for
Adaptive Network-based Fuzzy Inference System. ANFIS utilizes
a strategy of hybrid training algorithm to tune all parameters.
It takes a given input/output data set and constructs a fuzzy
inference system which has membership function parameters
that are tuned, or adjusted, using a back-propagation algorithm
in combination with the least-squares type of method (NAZMY
.T.M, 2009). Fuzzy inference systems are also known as fuzzyrule-based
systems, fuzzy models, fuzzy associative memories
or fuzzy controllers, when used as controllers. Basically, a fuzzy
inference system is comprised of five functional blocks.


a. A rule base containing a number of fuzzy if-then rules. 


b. A database which defines the membership functions of
the fuzzy sets used in the fuzzy rules.


c. A decision-making unit which performs inference
operations on the rules. 


d. A fuzzification interface which transforms the crisp
inputs into degrees of match with linguistic values. 


e. A defuzzification interface which transform the fuzzy
results of the inference into a crisp output. 


Usually the rule base and database are jointly referred to as
the knowledge base. The steps of fuzzy reasoning performed by
fuzzy inference systems are:


a. To compare the input variables with the membership
functions on the premise part so as to obtain the membership
values. (That is the fuzzification step). 


b. To combine multiplications or minimizations of the
membership values on the premise part so as to yield the
firing strength of each rule. 


c. To generate the qualified consequence-- either fuzzy
or crisp -- of each rule depending on the firing strength. 


d. To aggregate the qualified consequences so as to
produce a crisp output. (That is the defuzzification step).



Results of ANFIS network for maximum PGA simulation


In this research, an adaptive neuro-fuzzy inference method
was applied to simulate non-linear mapping among acceleration
peak conditions. The neuro-fuzzy model included an
approximate fuzzy reasoning through a sugeno fuzzy inference
system (FIS). The input space was fuzzified by a grid-partitioning
technique. A hybrid learning algorithm was selected in order to
adapt the model's parameters. Furthermore, a linear-nonlinear
regression analyses and neural network model were employed
to observe the relative performances. Based on our findings, it
can be concluded that the neuro-fuzzy control system exhibits
a superior performance, compared to the other employed
methods [19,20]. In the developed ANFIS model, input-space
fuzzification was carried out via the grid-partitioning technique.
Fuzzy variables were divided into four triangular membership
functions x1,x2,x3,x4 . The 625 fuzzy 'if-then' rules were set
up where in the fuzzy variables were connected by the T-Norm
(AND) apparatus. First order sugeno FIS was selected for the
approximate reasoning process. The adjustment of independent
parameters was made according to the batch mode based on
the hybrid learning algorithm. The ANFIS model was trained
for 50epochs until the observed error ceased to fluctuate. The
resultant neuro-fuzzy Simulink model structure is illustrated in
Figure 9.


The input space contains four parameters- moment
magnitude (Mw), rupture distance, fault mechanism and site
class. The output contains vertical components of PGA, including
40 records from different regions of the world, 24 records for
training, 6 records for checking and 10 records for testing the
selected ANFIS network. Sixty training data and sixty checking
data pairs were obtained at first. The one used here contains 625
rules, with four membership functions being assigned to each
input variable, having total number of 3185 fitting parameters
which are composed of 60 premise parameters and 3125
consequent parameters. This section presents the simulation
results of the proposed type-3 ANFIS with both batch (off-line)
and pattern (on-line) learning. In the first example, ANFIS is 
used to model highly nonlinear functions, where by results
are compared with the neural network approach and also with
relevant earlier work. In the second example, the FIS name is
PGA1 and the FIS type is sugeno. We used the 'and-or' method for
input partitioning. Furthermore, we used 'wtsum' and 'wtaver'
functions for defuzzification. The ranges of input and output
variables- in other words, the target variables- are Mw=(5-8),
R=(1.50-80 km), fault mechanism type =(1-5),site class=(1-5)
and target range (PGA)=(0.5-2.50). The number of MFs={5 5 5
5}, the MF type=Trimf and G-bell MFs (Figure 9 &10). The result
of this simulation is LSE: 0.002 and the final epoch error equals
to 0.0000002. 
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Figure 9:  Simulink diagram for the ANFIS structure.
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Figure 10:  Membership functions for ANFIS training.

 


Results of the ANFIS network


The input MFs for initial fuzzy inference system and the MFs
of trained FIS are shown in Figure 11 & 12. The rule base for
the designed ANFIS is shown in Figure 13. Finally, a trained FIS
structure is created from the initial FIS by using the ANFIS GUI
editor, which is depicted in Figure 14. Also, by testing the results,
one can interpret Table 4. Fuzzy parameters used for training
ANFIS are shown in Table 5. Also two membership functions for
ANFIS training are shown in Figure 10.
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Figure 11:   Final membership function (Trimf) for input 3 with five MFs.
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Figure 12: Final G-bell MFs after training ANFIS

 


Discussion on Results


Empirical recordings have had a significant influence on
the estimation of the maximum physical ground motions that
can be possible. Peak ground acceleration is an important
factor which needs to be investigated before testing devastation
potentials that can result from earthquakes in rebuilding sites.
One of the problems that deserve attention by seismologists
is the occurrence of earthquakes where of the ground motion
acceleration peak unexpectedly appears to be more than 1g
(Figure 15-18). Valuable data on some earthquakes have been
used by Strasser [6] to investigate the earthquakes' physical
processes and their consequences. 


Figure 15a & b shows the acceleration and velocity traces of
the horizontal components falling into this category for which 
the recordings were available. Spectra of pseudo-acceleration
response, pertaining to damping by 5%, are also shown. All the
examined traces are characterized by a very pronounced peak
in the short-period (T=0.3s) range of the spectrum. The peak
velocities that are associated with these recordings are less
than 50cm/s. Slip distribution of focal mechanism for tohoko
earthquake in Japan are shown in Figure 15c. The results of
Gullo and Ercelebi's [2] research (2007) indicated that the
fitting between the predicted PGA values by the networks
and the observed ones yielded high correlation coefficients
(R2). Furthermore, comparisons between the correlations
by the ANN and the regression method showed that the ANN
approach performed better than the regression method (Table
6). The developed ANN models can be used conservatively so
as to establish a good understanding of the influence of input
parameters for the PGA predictions.
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Figure 13:  Rule base for the designed ANFIS.
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Figure 14: The structure of the ANFIS model.

 



Table 4:  
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Table 5:  Fuzzy parameters for training ANFIS..
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Figure 15a:   Acceleration and Velocity traces and the 5% damped pseudo-acceleration response spectra of recordings at rupture distances
greater than 20 km.
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Figure 15b:   Horizontal component (EW) of pseudo-acceleration response spectra in Tohoko earthquake of Japan (11March 2011)
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Figure 15c:   Vertical component of ground velocity spectra for tohoko earthquake in Japan.

 


In Strasser and Bommer's [6] research, a dataset of
recordings was examined. It was characterized by the recordings'
large amplitudes of PGA (1g) (Figure 15). A number of physical
processes have been proposed in the literature to explain
these large ground motions, which are commonly divided into
source, path and site related effects. While it is often a matter of
convention whether these are considered to be predominantly
linked to ground motion generation (source effects) or
propagation (path and site effects), particularly in the nearsource
region, it is important to distinguish between factors that
are event-specific, station-specific and record-specific, in terms
of implications for ground motion predictions and thus seismic
hazard assessment. This is because only site-specific effects can
be predicted for certain, in advance. In the present paper, the
ANN algorithm indicated that the fitting between the predicted
PGA values by the networks and the observed PGA values could
yield high correlation coefficients of 0.851for PGA (Figure 3).
Moreover, comparisons between the correlations obtained
by the ANN and the regression method demonstrated that the
ANN algorithm performed better than the regressions. The
Levenberg-Marquart gradient method which we applied on the
training algorithm contributed dominantly to fitting the results
well.  



[image: ]

Figure 15d:   Slip distribution for tohoko earthquake in Japan.
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Figure 16:   Scatter plot of predicted PGA values versus observed PGA values for testing the ANFIS network

 



Table 6:The correlation coefficients of the predicted versus observed PGA values from the ANN and the regressions
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Figure 17a:    Scatter plot of analysis regression for the observed
and predicted PGA values for maximum PGA in the test period
(CANFIS, TimeLag , RBF and FFBP neural network).
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Figure 17b:   Scatter plot of analysis regression for the observed
and predicted PGA values for maximum PGA in the test period
(CANFIS, Time Lag and SOFM neural network).

 


It had the potential to carry out training very quickly.
Moreover, the network models developed in this paper offer new
insights into attenuation studies for the purpose of estimating
the PGA. In this study, ANFIS and FFBP models were developed
to forecast the PGA in different regions of the world. The results
of two models and the observed values were compared and
evaluated based on their training and validation performance
(Figures 2 & 4). The results demonstrated that ANFIS and FFBP
models can be applied successfully to establish accurate and
reliable PGA forecasting, when comparing the results of the two
networks. It was observed that the value of R belonging to the
FFBP models is high (0.78) (Figure 3). Moreover, the LSE values of
the ANFIS model -- which is 0.012 -- were lower than that of the
FFBP model (Table 4). Therefore, the ANFIS model could be more
accurate than the FFBP model. However, a significant advantage
is evident when predicting the PGAvia ANFIS, compared to the
FFBP model (Figures 16 & 17). The simulations show that the
ANFIS network is good for predicting maximum peak ground
acceleration in some regions of the world. Finally, the minimum
testing error- obtained for the ANFIS network- is 0.002 and the
ultimate epoch error is 0.012 (Table 4). This conclusion shows
that the ANFIS network can be suitable and useful for predicting
values of peak ground acceleration for future earthquakes.
PGA-predicted values versus record numbers for three neural
networks are shown in Figure 18 & 19.
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Figure 18:  PGA-predicted values versus record numbers for
three models of neural network..
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Figure 19:   PGA predicted versus record numbers for two neural
network models and comparing them with Target (Observed
PGA).

 


Conclusion 


In this study, FFBP neural networks and ANFIS were trained
so as to estimate peak ground acceleration in an area. The input
variables in the ANN model were the magnitude, the rupture
distance, the focal mechanism and site classification. The output
was the PGA only. In the end, the minimum testing error was
obtained for the ANFIS network, which equaled 0.002, and the
mean square error for the FFBP neural network equaled 0.017.
This conclusion shows that the ANFIS network can be suitable
and useful in predicting peak ground acceleration for future
earthquakes.
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