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Abstract


We propose and study a method for partial covariates selection, which only select the covariates with values fall in their effective ranges.
The coefficients estimates based on the resulting data is more interpretable based on the effective covariates. This is in contrast to the existing
method of variable selection, in which some variables are selected/deleted in whole. To test the validity of the partial variable selection, we
extended the Wilks theorem to handle this case. Simulation studies are conducted to evaluate the performance of the proposed method, and it is
applied to a real data analysis as illustration. 
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Introduction
 

Variables selection is a common practice in biostatistics and
there is vast literature on this topic. Commonly used methods
include the likelihood ratio test [1], AIC [2], BIC [3], the minimum
description length [4,5], etc. The principal components models
linear combinations of the original covariates, reduces large
number of covariates to a handful of major principal components,
but the result is not easy to interpret in terms of the original
covariates. The stepwise regression starts from the full model,
and deletes the covariate one by one according to some statistical
significance measure. May et al. [6] addressed variable selection
in artificial neural network models, Mehmood et al. [7] gave a
review for variable selection with partial least squares model.
Wang et al. [8] addressed variable selection in generalized
additive partial linear models. Liu et al. [9] addressed variable
selection in semiparametric additive partial linear models.



The Lasso [10,11] and its variation [12,13] are used to select
some few significant variables in presence of large number of
covariates. However, existing methods only select the whole
variable(s) to enter into/delete from the model, which may not
the most desirable in some bio-medical practice. For example,
in the heart disease study [14,15], there are more than ten risk
factors identified by medical researchers in their long time
investigations, with the existing variable selection methods,
some of the risk factors will be deleted wholly from the
investigation, this is not desirable, since risk factors will be really
risky only when they fall into some risk ranges. Thus delete the
whole variable(s) in this case seems not reasonable in this case,
while a more reasonable way is to find the risk ranges of these
variables, and delete the un-risky ranges. In some other studies,
some of the covariates values may just random errors which do
not contribute to the influence of the responses, and remove
these covariates values will make the model interpretation
more accurate. In this sense we select the variables when they
fall within some range. To our knowledge, method for partial
variable selection hasn't been seen in the literature, and our
goal here is to explore such a method. In the existing method
of deleting whole variable(s), the validity of such selection can
be justified using the Wilks result, under the null hypothesis of
no effect of the deleted variable(s), the resulting two times loglikelihood
ratio will be asymptotically chi-squared distributed.
We extended the Wilks theorem to the case for partial variable
deletion, and use it to justify the partial deletion procedure.
Simulation studies are conducted to evaluate the performance
of the proposed method, and it is applied to analyze a real data
set as illustration.



The proposed method



The observed data is (yi,xi) = where yi is the
response and d
xi ∈ Rd  is the covariates, of the
ith  subject. Denote 

y=(y1,...,yn)' and  Xn = (x1',...,xn')'. Consider the linear model[image: ]



Where ß=(ß1 ,...,ßd )' is the vector of regression parameter,
 òn=(ò1,...,òn)' is the vector of random errors. Without
loss of generality we consider the case the 
[image: ] are iid,[image: ] where In is the n dimensional identity matrix.
When the

[image: ]  are not iid, often it is assumed [image: ] for
some known positive-definite Ω, then make the transformation [image: ] then we get the model
[image: ]  are iid with [image: ]  When Ω s
unknown, it can be estimated by various ways. So below we only
need to discuss the case the 
[image: ] are iid.


We first give a brief review of the existing method of variable
selection. Assume [image: ] has some known density f (.)
(such as normal), with possibly some unknown parameter(s).
For simple of discussion we assume there is no unknown
parameters. Then the log-likelihood is 


[image: ]


Let [image: ] be the MLE of ß (when f (.) is the standard normal
density, [image: ] is just the least squares estimate). If we delete [image: ]
columns of  Xn and the corresponding components of ß, denote
the remaining covariate matrix as [image: ]
 and the resulting ß as ß-
and the corresponding MLE as [image: ]-.
Then under the hypothesis
H0 : the deleted columns of Xn has no effects, or equivalently
the deleted components of ß are all zeros, then asymptotically


[image: ]


Where [image: ] is the chi-squared distribution with k degrees
of freedom. Let [image: ]upper quantile of the [image: ] distribution, if [image: ]  then H0 is rejected at
significance level α, and its' not good to delete these columns
of ; Xn otherwise we accept H0 and delete these columns of
. Xn There are some other methods to select columns of , Xn
such as AIC, BIC and their variants, as in the model selection
field. In These methods, the optimal deletion of columns of n X
corresponds to the best model selection, which maximize the
AIC or BIC. These methods are not as solid as the above one,
as may sometimes depending on eye inspection to choose the
model which maximize the AIC or BIC.


All the above methods require the models under consideration
be nested within each other, i.e., one is a sub-model of the other.
Another more general model selection criterion is the minimum
description length (MDL) criterion, a measure of complexity,
developed by Kolmogorov [4], Wallace and Boulton, etc. The
Kolmogorov complexity has close relationship with the entropy,
it is the output of a Markov information source, normalized
by the length of the output. It converges almost surely (as
the length of the output goes to infinity) to the entropy of the


source. Let [image: ] be a finite set of candidate models under
consideration, and È={θj:j=1,...,h} be the set of parameters of
interest.   θi may or may not be nested within some other , θ j
or  θi and θ j both in È may have the same dimension but with
different parametrization. Next consider a fixed density [image: ]
with parameter θ j running through a subset[image: ] to emphasize
the index of the parameter, we denote the MLE of θj under model
f (.|.) by [image: ](instead of by [image: ] to emphasize the dependence on
the sample size), I (θ j) the Fisher information for θj under f (.|.)
[image: ] its determinant, and kj the dimension of .θj Then the MDL
criterion [16] chooses θ j to minimize 



[image: ]


This method does not require the models be nested, but still
require select/delete some whole columns, and does not apply
to our case.


Now come to our question, which is non-standard and we are
not aware of a formal method to address this problem. However,
we think the following question is of practical meaning. Consider
deleting some of the components within fixed [image: ] columns of
 Xn the deleted proportions for these columns are [image: ].Denote Xn
- for the remaining covariate matrix, which is Xn with
some entries replaced by 0's, corresponding to the deleted
elements. Before the partial deletion, the model is [image: ].



After the partial deletion of covariates, the model becomes [image: ].


Note that here ß and ß-
 have the same dimension, as no
covariate is completely deleted. ß is the effects of the original
covariates, ß- is the effects of the covariates after some possible
partial deletion. It is the effects of the effective covariates. Thus,
though ß and ß-
 have the same structure, they have different
interpretation. The problem can be formulated as testing the
hypothesis:


[image: ]


 If H0 is accepted, the partial deletion is valid.



Note that different from the standard null hypothesis that
some components of the parameters be zeros, the above null
hypothesis is not a nested hypothesis, or ß-
 is not a subset of
ß, so the existing Wilks' theorem for likelihood ratio statistic
does not directly apply to our problem. Denote [image: ]be the
corresponding log-likelihood based on data [image: ] and the
corresponding MLE as [image: ]. Since after the partial deletion, ß- is
the MLE of under a constrained log-likelihood, while [image: ]
is the
MLE under the full likelihood, we have

[image: ]
Parallel to the
log-likelihood ratio statistic for (whole) variable deletion, let, for
our case,

[image: ].





Let [image: ]be the columns with partial deletions,

[image: ]be the index set for the deleted
covariates in the

[image: ] column be the cardinality of Cj, thus

[image: ] We first give the following Proposition,
in the simple case in which the index sets  Cjr are mutually
exclusive. Then in Corollary 1 we give the result in more general
case in which the index sets r Cjr are not need to be mutually
exclusive. For given , Xn there are many different ways of partial
column deletions, we may use Theorem 1 to test each of these
deletions. Given a significance level α, a deletion is valid
at level α if [image: ] ,Where

[image: ]  upper
quantile of the

[image: ]  distribution, which can be computed by
simulation for given 

[image: ] .



The following Theorem is a generalization of the Wilks [1]
Theorem. Deleting some whole columns in , Xn corresponds
to [image: ]  in the theorem, and then we get the existing
Wilks' Theorem.




Theorem 1

Under [image: ]  suppose [image: ]  the empty set, for all [image: ] then we have

[image: ]

 Where [image: ] re  iid  chi-squared  random  variable  with  
1-degree of freedom. The case the [image: ]   are not mutually exclusive 
is a bit more complicated. We first re-write the sets [image: ] such that 

[image: ]

where the [image: ] are mutually exclusive, [image: ]     are  
index sets for one column of [image: ]only; the [image: ]   are index sets 
common for columns j1  and j2 only; the [image: ]  are index sets 
common for columns j1 j2 and j3 only,.... Generally some of the [image: ]  are empty sets. [image: ]  be the cardinality of [image: ] and [image: ]    By examining the proof 
of  Theorem  1,  we  get  the  following  corollary  which  gives  the  
result in the more general case.

Corollary 1: Under H0,  we have 

[image: ]


Where the [image: ] are all independent chi-squared random 
variables with r-degrees of freedom [image: ]

Below   we   give   two   examples   to   illustrate   the   usage   of   
Proposition.


Example 1:n=1000,d=5 k=3.   Columns  (1,2,4)  has   some   partial   deletions   with      C1{201, 202,...., 299, 300}  ,C2={351, 352,..., 549, 550}  ,C3={601, 602,..., 849, 850}  the   have no Cj's
overlap; [image: ]    o by the Proposition, under H0  we have 

[image: ]

Where all the chi-squared random variables are independent, 
each has 1 degree of freedom


Example 2:n=1000,d=5 k=3.  Columns (1,2,4) has some partial     deletions     with  [image: ] [image: ] In this case the  [image: ] have   overlaps,   the   Proposition   can   not   be   used   directly,   
so    we    use    the    Corollary.    Then        [image: ] [image: ] Corollary, under H0  we have

[image: ]


 where all the chi-squared random variables are independent, 
with [image: ]  are each of 1 degree of freedom, [image: ] and [image: ] are each of 2-degrees of freedom, and [image: ]   is of 3-degrees 
of freedom.  Next, we discuss the consistency of estimation of  [image: ] under the null hypothesis [image: ]  with probability [image: ] where [image: ]  is an i.i.d. copy of the [image: ]     whose  
components  with  index  in  [image: ]  in particular  [image: ]       is  the  index  
set for those covariates without partial deletion.


Theorem 2

 Under conditions of Theorem 1,

[image: ]

 Where,

[image: ]

To  extend  the  results  of  Theorem  2  to  the  general  case,  
we  need  the  following  more  notations. Let [image: ]       be  an  i.i.d.  
copy of data in the set [image: ] with probability  [image: ]  is an i.i.d. copy of the [image: ] whose components with index in [image: ]

Corollary  2:   Under  conditions  of  Corollary  1,  results  of  
Theorem 2 hold with  [image: ]  given above. 

Computationally [image: ]              is       well       
approximated by 


[image: ]


Where the notation [image: ]means summation over those [image: ]  with deletion index in [image: ]

Simulation study and application

Simulation study: We illustrate the proposed method with two examples,  Example  3  and  Example  4  below.  The  former  rejects  the null hypothesis H0  while the latter accepts. In each case we 
simulate n=1000 i.i.d. data with response yi and with covariates [image: ] We first generate the covariates, sample the [image: ]    from   the   5-dimensional   normal   distribution   with   
mean  vector    [image: ]   and  a  given  covariance  
matrix [image: ]  Then we generate the response data, which, given the 
covariates.  The  are  [image: ]  generated as  [image: ] [image: ]the [image: ]   are  i.i.d.
N(0, 1).  Hypothesis  test  is  conducted  to  examine  if  the  partial  deletion  is  valid  or  not. Significant level is set as α=0.05 The experiment repeated 
1000 times, prop represents the proportion [image: ]


 Example 3: In this example, we are interested to know whether covariates with [image: ]  can be deleted. Five data set with different [image: ] values are simulated. With [image: ] the results are shown in Table 1. We see that the proportion of rejecting [image: ]  are 
all smaller than 0.05 in the five set of [image: ]   This  suggests  that  
covariates with [image: ]  should not be deleted at 0.05 significance 
level.  Example 4. In this example, the original X  as in Example 
3, but now we replace the entries in first 100 rows and first three 
columns  by  [image: ]  where [image: ]     We  are  interested  to  see  in  this  
case whether these noises can be deleted, i.e. H0   can be rejected 
or  not.  The  results  are  shown  in  the  following.  We  see  that  the  
proportion of rejecting [image: ] are all greater than 0.95 for the 
five sets of β0  It suggests that the data provided strong evidence 
to  conclude  that  the  deleted  value  are  noises  and  they  are  not  
necessary to the data set at 0.05 significance level.  




Table 1: The simulation result of [image: ] and its Prop according to ß0 

[image: ]




Application to real data problem


We analyze a data set from the Deprenyl and Tocopherol
Antioxidative Therapy of Parkinsonnism, which is obtained
from The National Institutes of Health (NIH)[17]. It is a multicenter,
placebo-controlled clinical trial that aimed to determine
a treatment for early Parkinson's disease patient to prolong
their time requiring levodopa therapy. The number of patients
enrolled was 800. The selected object were untreated patients
with Parkinson's disease (stage I or II) for less than five years
and met other eligible criteria. They were randomly assigned
according to a two-by-two factorial design to one of four
treatment groups:


Placebo

Active tocopherol

Active deprenyl

Active deprenyl and tocopherol.



The observation continued for 14±6 months and reevaluated
every 3 months. At each visit, Unified Parkinson's Disease Rating
Scale (UPDRS) including its motor, mental and activities of daily
living components were evaluated. Statistical analysis result was
based on 800 subjects. The result revealed that no beneficial
effect of tocopherol. Deprenyl effect was found significantly
prolong the time requiring levodopa therapy which reduced the
risk of disability by50 percent according to the measurement of
UPDRS. Our goal is to examine whether some of the covariates
can be partially deleted. The response variables to examined are
PDRS, TREMOR,S/E ADL by Rater, PIGD, Days from enrollment
and Days from enrollment to Need for LEVODOPA. The covariates
are Age, Motor and ADL for all these responses [18]. The deleted
covariates are the ones with values below the γth data quantile,
with γ = 0.01,0.02,0.03 and 0.05. We examine the
responses one by one. The results are shown in Tables 2-5 below.


In Table 3, response TREMOR is examined. For covariable
Age, the likelihood ratio Ë is larger than the cutoff point [image: ]at 0.03 and 0.05 levels, it suggests that for Age, partial deletions
with these proportions are not valid. For covariable Motor, Ë n is
smaller than the cutoff point  [image: ]    at the 0.05 and 0.1 levels,
this covariable can be partially deleted at these proportions.
For covariable of ADL, with deletion proportions 0.01-0.1, the
likelihood ratio Ë n is smaller than   [image: ]   which suggest that the
lower percentage of 1%-10% can be deleted. In Table 4, PIGD is
the response variable. For covariable age, Ë n is larger than the
cutoff point Q(1-α)  at 0.01, 0.02, 0.03 and 0.05 level, suggests
that it cannot be partially deleted with these proportions [19].
For covariable Motor, dan is smaller than cutoff point     [image: ]   


at the deletion proportions of 0.02 and 0.03, suggests that
the lower percentage of 2% and 3% can be deleted from the
covariable Motor. For the variable ADL, Ë n  is larger than the


cutoff point Q(1-α ) at the delete proportion of 0.01, 0.02, 0.03
and 0.05, hence partial deletion is not valid.


In Table 5, the response is PDRS. The likelihood ratios
Ë n  of Age, Motor and ADL all are larger than [image: ] 

at the
deletion proportions of 0.01, 0.02, 0.03 and 0.05. Thus the null
hypothesis are rejected at all these proportions. Note that the
coefficient for Age is insignificant, and hence the corresponding
Ë n values with deleted proportions are senseless Appendix.



Table 2: The simulation result of [image: ] and its Prop according to ß0 

[image: ]





Table 3:  Response TREMOR: Ën values and estimated regression coefficients.  

[image: ]





Table 4: Response TREMOR: Ën values and estimated regression coefficients.   

[image: ]






Table 5: Response TREMOR: Ën values and estimated regression coefficients.   

[image: ]





  Concluding remarks


   We proposed a method for partial variable deletion, which is
a generalization of the existing variable selection. The question
is motivated from practical problems. It can used to find the
effective ranges of the covariates, or to remove possible noises
in the covariates, and thus the corresponding estimated effects
are more interpretable. The procedure is a generalization of the
Wilks likelihood ratio statistic, and is simple to use. Simulation
studies are conducted to evaluate the performance of the
method, and it is applied to analyze a real Parkinson disease data
as illustration.
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