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Abstract


For intrinsic random processes, an appropriate estimation of the variogram is required to derive accurate predictions, when proceeding
through the kriging methodology. The resulting function must satisfy the conditionally negative definiteness condition, both to guarantee a
solution for the kriging equation system and to derive a non-negative prediction error. Assessment of the resulting function is typically addressed
through graphical tools, which are not necessarily conclusive, thus making it advisable to perform tests to check the adequateness of the fitted
variogram.
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Introduction


When spatial data are collected, construction of a prediction
map for the variable of interest, over the whole observation region,
is typically addressed through the kriging techniques [1]. This
methodology has been applied in a variety of areas (hydrology,
forestry, air quality, etc.) and its practical implementation
demands a previous estimation of the data correlation. The latter
issue can be accomplished by approximating the variogram
function [2], under the assumption that the underlying process is
intrinsic, which is the least restrictive stationarity requirement. 


However, estimation of the variogram is far from simple.
It requires that the resulting function is valid for prediction,
namely, that it fulfills the conditionally negative definiteness
condition and, in practice, this problem is usually solved through
a three-step procedure [3]. To start, a nonparametric method
can be employed to obtain the empirical variogram or a kerneltype
approach, among other options, although the functions
derived in this way are not necessarily valid [4,5]. Then, in a
second step, a valid parametric model is selected, so that the
unknown parameters are estimated to best fit the data by any
of the distinct criteria (maximum likelihood, least squares, etc.)
provided in the statistics literature. Finally, the adequateness
of the fitted variogram function should be checked, by using
a cross-validation mechanism or goodness of fit tests. The
former procedures are not always conclusive and their use is
recommended for comparison of several valid models, rather
than for assessment of a unique fit. Also, we could perform a
test to determine the appropriateness of a variogram model, as
the one introduced in Maglione & Diblasi [6], for application to
random Gaussian and isotropic random processes, or a more
general one suggested in Garcìa-Soidán & Cotos-Yáñez [7], which
accounts for both the isotropic and the anisotropic scenarios. 


An important shortcoming of this three-stage scheme is
the choice of the parametric model. The most common options
are based on the use of flexible functions, such as the Matérn
one, or on the selection of a model “by eye”, by comparing the
form of the nonparametric variogram with that derived for
different valid families, typically used in practice. However this
problem becomes more difficult when dealing with anisotropic
variograms. Indeed, isotropy conveys that the data correlation
depends only on the distance between the spatial sites and
not on the direction of the lag vector, unlike the anisotropic
assumption. This means that the assessment of isotropy could be
a previous step, whose acceptance would simplify the selection
of the model and the subsequent variogram computation. In
practice, the isotropic property is typically checked through
graphical methods, by plotting a nonparametric estimator in
several directions, although the latter procedures are not always
determinant. Formal approaches to test for isotropy have been
introduced in Guan et al. [8] or in Maity & Sherman [9]. The
first test was designed for its application to strictly stationary
random processes, whereas the latter one works for more
general settings. 


Conclusion

The need to obtain an adequate variogram estimator
demands a deep exploration of the available data. Firstly the
isotropic condition should be checked, as this condition would
simplify the characterization of the dependence structure. The
graphical diagnosis for assessment of this assumption should be
accompanied by the performance of some test to determine its
acceptance. Then, a nonparametric estimator can be computed
and used to derive a valid parametric fit, whose appropriateness
can also be evaluated through any of the goodness of fit tests
proposed.
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