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Abstract


In this paper, the Bayes estimates (BE's) of the parameters, reliability and hazard rate functions of a finite mixture of truncated generalized Cauchy distributions are obtained based on type-I, type-II and progressively type-II censored samples. A simulation study is carried out to study the behaviour of the mean squared errors (MSE's) of the estimates. All previous parameters and functions are obtained based on generated type-I, type-II and progressively type-II censored samples generated from a real data set as illustrative application.
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Introduction



The Cauchy distribution is a symmetric distribution with
bell shaped density function as the normal distribution but
with a greater probability mass in the tails. The distribution
is often used in the cases which arise in outlier analysis. The
Cauchy distribution has received applications in many areas,
including biological analysis, clinical trials, stochastic modelling
of decreasing failure rate life components, queuing theory,
and reliability. For data from these areas, there is no reason to
believe that empirical moments of any order should be infinite.
Thus, the choice of the Cauchy distribution as a model is
unrealistic since its moments of all orders are not infinite. The
introduced truncated generalized Cauchy distribution (TGCD)
can be a more appropriate model for the kind of data mentioned.
For more details about Cauchy and truncated generalized
Cauchy distributions, see the book by Johnson et al. [1] which
covers the Cauchy distribution in many of its aspects starting
from the history, properties, developments and applications up
to the most recent research done in the subject matter, to the
date of the book's publication. Also see, Ateya & AL-Hussaini
[2] and Ahsanullah [3] which studied the TGCD extensively.
The probability density (PDF), cumulative distribution function
(CDF), survival function (SF) and hazard rate function (HRF) of
the TGCD with parameters (α,ß,γ)  are given, respectively, by 
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And
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The mixture models are very important in the theoretical
and applied fields especially in case of the heterogeneous population. For details about mixture models, see McLachlan & Peel [4], Titterington, Smith & Makov [5], Bozidar et al. [6] and
Satheesh & Manju [7]. A random variable T is said to have a finite
mixture of TGCD's with parameters θj=(αj,βj,γj),j=1,2,...k,if its PDF is given by
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The corresponding CDF, SF and HRF are given by
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And,
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Where,fj(t;θj),Fj(t;θj) and Sj(t;θj) can be obtained from equations ( 1.1)-(1.3) after replacing θ=(α,β,γ) by
θj=(αj,βj,γj)



Prior analysis and some important algorithms

In this section, a suggested prior and some important
algorithms will be introduced. 


Prior analysis: Suppose that the prior belief of the
experimenter is measured by a prior PDF π(p,α1,α2,γ1,γ2,β) constructed as follows:
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Suppose that π1(p) is Beta (c1,c2),π21(γ1|α1) is Gamma
 


(c3,α1),π22(α1) is Gamma (c4,c5),π31(γ2|α2)


(c3,c5),π32(γ2|α2) is Gamma (c7,α8) and finally π4(β) is Gamma



(c9,α10) with respective densities
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From equations (2.2) to (2.7) in equation ([2.1), we can write the prior PDF of the parameters (p,α1,α2,γ1,γ2,β) as follows:


[image: ]


Where,c1,c2,c3,c4,c5,c6,c7,c8,c9  and are the prior parameters.



Gibbs sampler

Gibbs Sampler is a method used to generate a random sample 1 2
θ1,θ2,...,θm from the posterior PDF π*(θ⎢t) as follows: 


Let [image: ]be an initial values [may be actual
values of parameters, or may be the estimated values using any
method]



2- Generate θ11 from θ*(θ1⎢θ2°,θ3°,...,θk°,t).



3- Generate θ11 from θ*(θ2⎢θ11,θ3°,...,θk°,t).



4- Generate θ11 from θ*(θi⎢θ11,θ21,...,θi-11,θi+1°,...,θk°,t)



5- Generate θ1k from θ*(θk⎢θ11,θ21,...,θk-11,t) so we generateθ1=( θ11,..., θ1k)


6- Repeat steps 1-5 m times we get θ1,θ1,...,θm 



Metropolis-Hastings algorithm

Is a method used to generate a number θij from the posterior
PDF [image: ] This method can be
summarized in the following steps:



1- Generate θ*i from a suitable PDF f(θ)


2-A*=min{1,A},
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3- Generateu from u(0,1)
 

4- If A<U , then accept θ*i as  θji, else θ*i →θj-1igo to step1.


Markov chain monte carlo (MCMC) method


Let θ=(θ1,θ2,...,θk) be a parameters vector with a posterior PDF [image: ] the vector of observations. If θ=(θ1,θ2,...,θm),where  θ=(θ1i,θ2i,...,θki)  is a random sample of size
m generated from π*(θ⎢t), then the BE of a function u(θi) based on squared error (SE) loss functions is given by
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To generate from the posterior PDF π*(θ⎢t), we will use
Gibbs sampler and Metropolis-Hastings techniques. For more
details about the MCMC method, see, for example Jaheen &
Al-Harbi [8], Press[9], Upadhyaya et al. [10] and Upadhyaya & Gupta [11].


Bayes estimation

In this section, the BE's of all parameters, survival and
hazard rate functions will be estimated based on type-I, type-II
and progressive type-II censoring schemes.


Bayes Estimation Based on type-I censoring scheme
Suppose that we have n items from a finite mixture TGCD's,
with equal location parameters (β1=β2=β). All items are put on
a life testing experiment. Suppose that r units have failed during
the interval (0, t0) and (n-r) units are still active, where 0t is a
predetermined time. Let t1,...,tn be a random sample from the
mixed population. The exact lifetime of an item will be observed
only if ti≤t0,i=1,2,...,n. This is known as type-I censored
sample. The likelihood function(LF) based on type-I censored
sample, see Lawless[12], may be written as
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Where, fÈ(ti) and S È(t0) are defined in (1.5) and (1.7) after replacing t by  ti and t0 respectively, 
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And äi is an indicator function, given by
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Using the LF ( 3.1) and the prior ( 2.8), the posterior PDF of
the parameters π(p,α1,α2,γ1,γ2,β) can be written as


[image: ]


To estimate the parameters and functions p,α1,α2,γ1,γ2,β survival and hazard rate functions at time t* , we define a function
u( p,α1,α2,γ1,γ2,β) as
 


[image: ]


The BE of u( p,α1,α2,γ1,γ2,β) is obtained in five cases:


When δ1=1,δ2=0=δ3=δ4=δ5=δ6=δ7=δ8, which is equivalent to
estimating p. 




When  δ2=1,δ2=0=δ3=δ4=δ5=δ6=δ7=δ8,  which is equivalent to
estimating α1 .


When  δ3=1,δ2=0=δ3=δ4=δ5=δ6=δ7=δ8,  which is equivalent to
estimating α2 .



When  δ4=1,δ2=0=δ3=δ4=δ5=δ6=δ7=δ8,  which is equivalent to
estimating γ1 .



When  δ5=1,δ2=0=δ3=δ4=δ5=δ6=δ7=δ8,  which is equivalent to
estimating γ2 .



When  δ6=1,δ2=0=δ3=δ4=δ5=δ6=δ7=δ8,  which is equivalent to
estimating β .



When  δ7=1,δ2=0=δ3=δ4=δ5=δ6=δ7=δ8,  which is equivalent to
estimating S(t*) .


When  δ8=1,δ2=0=δ3=δ4=δ5=δ6=δ7=δ8,  which is equivalent to
estimating h(t*) .


Then, MCMC algorithm will be used to estimate all mentioned
parameters and functions


Bayes estimation based on type-II censoring scheme

Assume that we put items from a finite mixture of TGCD's in
a life testing experiment. Instead of continuing until all n items
have failed, the experiment is terminated at the time of the rth
item failure. Such test can save time and money, since it could
take a very long time for all items to fail. Suppose that t1<t2<...<tr is a censored data of size r obtained from a life test on n items
(type-II censored data) whose life times have a finite mixture of
TGCD's. The likelihood function based on Type-II censored data,
see Lawless [12], is given by
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 the prior ([2.8]) and the LF (3.6), the posterior PDF of the parameters ( p,α1,α2,γ1,γ2,β) can be written as


[image: ]

and the same is done as 3.1.


Bayes estimation based on progressively type-II
censoring scheme

The progressive type-II censored model is of importance in
the field of reliability and life testing. Suppose nidentical units
are placed on a lifetime test. At the time of the  ith failure, Ri
surviving units are randomly withdrawn from the experiment,
l≤i≤r. Thus, if rfailures are observed then R1+R2+...+Rr, units are progressively censored, hence n=r+R1+R2+...+Rr
and [image: ]describe the progressively censored
failure times, where M=(R1,R2,...,Rr) and [image: ] The likelihood function based on progressively type-II censored data
[image: ] which can be written for simplicity as
t=(t1,t2,...,tr) is given by


[image: ]


Where,

[image: ], See
Balakrishnan & Aggarwala [13].



Using the LF (3.8) and the prior PDF (2.8), the posterior PDF
will be given by


[image: ]


Where,

C*=n(n-R1-1)(n-R1-R2-1)....(n-R1-R2-...-Rr-1-r-1),
 and also the same is done as 3.1 and 3.2.


Simulation study and data analysis

In  this  section,  all  studied  parameters  and  functions  will  be  estimated  based  on  type-I,  type-II  and  progressive  type-II  
censoring samples from generated and real data. 


Simulation study

In this section, a simulation study is carried out to study the 
behavior  of  the  MSE's.  In  case  of j=2, we  can  write  p1=p,p1=1-p then  the  vector  of  all  parameters 
 will  be  in  the  form  φ =(α1,α2,β,γ1,γ2,p).


For different values of t0 and ,r follow the following steps:

Making use of the set of hyper parameters, the vector of the 
population parameters will be generated.

Making    use    of    the    generated    vector    of    parameters    φ =(α1,α2,β,γ1,γ2,p),
 samples  of  different  sizes  n  (10,  20,  30)  are generated from a mixture of two TGCD as follows: 


• Generate U1and U1 from  the  uniform  distribution    U( 0, 1).

• If  U1 < p,generate   from F1(α1,β,γ1) using  U2 ,
otherwise generate from F1(α1,β,γ1) using U2  .


For a value  t=0 , we consider all values of the random variable T which are less than or equal[image: ] (type-I  censored sample).



Based  on  this  sample  and  for  different  values  of t=0 ,we  can  use  the  Bayes  method  to  obtain  the  estimate  of  the  vector  of  
parameters  φ. survival and hazard rate functions. 


Based  on  the  sample t1<t2<...<tr which  is  a  type-II  censored  sample,  we  can  use  Bayes  method,  as  done  in  case  
of  type-I  censoring,  to  obtain  the  BE's  of  the  same  vector  of  parameters and functions, for different values of  r.



For different schemes, progressive type-II will be generated and the same is done based on the generated progressively type-II censored samples.


Repeat steps 1-6 (m) times for different samples.

The MSE's of [image: ] over the m samples is given by:

[image: ]


Where  φ is the actual value of the vector of parameters  [image: ]and φ is  the  estimate  of  the  vector  of  parameters      over  the  
sample  j.


In  Tables  1-6  the  BE's  of  all  parameters  and  functions  have  been obtained based on Type-I, Type-II and progressively Type-II censored samples.



Table 1:     MSE's   of   the   BE's   of α1,α2,β,γ1,γ2 and   p   based   on   type-I   censored   data   of   different   sizes   n,   censoring   values t0 (α1=2.5,α2=1.6,β=1.5,γ1=3.5,γ2=1.7,p=0.3)

[image: ]






Table 2:  MSE's   of   the   BE's   of   S(t*) and    h(t*) based   on   type-I   censored   data   of   different   sizes   n,   censoring   values   t0  (α1=2.5,α2=1.6,β=1.5,γ1=3.5,γ2=1.7,p=0.3). S(t*)=0.259437 ,
h(t*)=0.964188,t*=3.0
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Table 3:  MSE's   of   the   BE's   of α1,α2,β,γ1,γ2
 and   p   based   on   type-I   censored   data   of   different   sizes   n,   censoring   values 
(α1=2.5,α2=1.6,β=1.5,γ1=3.5,γ2=1.7,p=0.3)

[image: ]






Table 4:  MSE's   of   the   BE's   of   S(t*) and    h(t*) based   on   type-I   censored   data   of   different   sizes   n,   censoring   valuesr  (α1=2.5,α2=1.6,β=1.5,γ1=3.5,γ2=1.7,p=0.3). S(t*)=0.259437 ,
h(t*)=0.964188,t*=3.0


[image: ]





Table 5:  MSE's   of   the   BE's   of α1,α2,β,γ1,γ2
 and   p based on progressively type-II censored data of different sizes n, censoring schemes M.

M1=(0,5, 3, 2, 2,1, 0, 0, 2, 0).


M2=( 0, 3,1, 0,1, 0, 0, 2,1, 0, 0,1, 0,1, 0).


M3=(3,0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,0, 0, 0, 0, 0) .


(α1=2.5,α2=1.6,β=1.5,γ1=3.5,γ2=1.7,p=0.3)

[image: ]






Table 6: MSE's   of   the   BE's   of   S(t*) and   h(t*) based   on   type-I   censored   data   of   different   sizes   n,   censoring   values M.

M1=(0,5, 3, 2, 2,1, 0, 0, 2, 0).


M2=( 0, 3,1, 0,1, 0, 0, 2,1, 0, 0,1, 0,1, 0).


M3=(3,0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,0, 0, 0, 0, 0) .


(α1=2.5,α2=1.6,β=1.5,γ1=3.5,γ2=1.7,p=0.3)

S(t*)=0.259437 ,h(t*)=0.964188,t*=3.0

[image: ]




Data analysis

In this section, a mixture of two real data sets from Ateya &
Madhagi [14] is introduced. These data are (after ordering)

2.3707, 2.4282, 2.4743, 2.4858, 2.4858, 2.5088, 2.5663,
2.6239, 2.6239, 2.6814,2.762, 3.0266, 3.1187, 3.1509, 3.5905,
3.6825, 3.6825, 3.7136, 3.7373, 3.7799, 3.8322, 3.8603,
3.8981, 3.9644, 4.059, 4.1583, 4.2577, 4.2719, 4.3326, 4.3846,
4.4275, 4.4275, 4.532, 4.554, 4.5856, 4.6172, 4.6172, 4.6488,
4.7121, 4.7355, 4.807, 5.1518, 5.166, 5.1944, 5.2369, 5.6201,
5.9607, 6.5568, 7.1529, 7.644, 7.81, 7.84, 7.938, 8.0044, 8.134,
8.526, 8.82, 8.82, 9.31, 9.31, 9.506, 9.8, 10, 10.001, 10.1, 10.3,
10.9504, 11.3302, 11.3935, 11.6, 11.8394, 12.6457, 12.9286,
13.1, 13.169, 13.2, 13.3246, 13.4, 13.7, 13.7914, 13.8, 14, 14, 14,
14.0177, 14.0885, 14.1, 14.1733, 14.4, 14.6, 14.6118, 15.0645,
15.5, 15.5454, 15.9698, 16.1, 16.479, 16.5, 16.9, 16.9, 17.0306,
17.1, 17.2, 17.3, 17.3, 17.3, 17.3, 17.4, 17.7, 17.8, 17.8793,
17.9, 18.2, 18.9, 19.2357, 19.4, 20.0812, 21.5, 22.7587, 23.4,
23.6, 24.1, 25, 26.4226, 26.5, 26.7, 26.7, 26.8, 26.9, 27.6, 28.4,
28.9, 29.4, 29.8, 30, 30.157, 30.4, 30.9, 31.2, 31.8, 32.9, 33.9,
34.4551, 35.5, 37.6963, 37.7, 39.8, 40.5852, 41.1, 42.5, 44.6719,
46.2, 48.829, 51.9, 54.3249, 55.5, 58.2, 60.3141, 62.1, 65.5281,
67.2192, 67.7, 72.4151, 76.7, 79.8316, 85.5389, 86.3, 92.0212,
94, 97.6, 99.2082, 101.3, 105.3, 106, 107.6, 107.9, 109.3, 110,
110.5, 112.8, 115.4, 118.5, 120, 120.3, 120.5, 121.9, 124.1, 126.1,
131.3, 133.8, 135.4, 137.9, 139.5, 141.9, 142.8, 145.8, 146.5,
149.7, 150.6, 153.5, 158.6, 161.3, 163.9, 168.3, 174, 176.7, 180.9,
184.3, 190.3, 196.8


The BE's of the parameters, survival and hazard rate
functions based on type-I, type-II and progressively type-II
under the previous real data set are summarized in Tables 7-12.




Table 7: 
 BE's of the population parameters based on type-I censoring scheme from real data set.

[image: ]






Table 8: 
BE's of the survival and hazard rate functions based on type-I censoring scheme from real data set at .

[image: ]






Table 9: 
BE's of the population parameters based on type-II censoring scheme from real data set. 

[image: ]





Table 10: 
 BE's of the survival and hazard rate functions based on type-II censoring scheme from real data set at .
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Table 11: 
 BE's of the population parameters based on progressively type-II censoring scheme from real data set.

[image: ]




M1= (12, 017, 30, 020, 27, 015, 22, 07, 35, 06, 9, 04)

M2= (10, 030, 20, 020, 20, 030, 5, 020, 2, 030, 3, 014)

M3= (0210)




Table 12: 
 BE's of the survival and hazard rate functions based on progressively type-II censoring scheme from real data set.

[image: ]




data set.

M1= (12, 017, 30, 020, 27, 015, 22, 07, 35, 06, 9, 04)

M2= (10, 030, 20, 020, 20, 030, 5, 020, 2, 030, 3, 014)

M3= (0210)


In most cases, observe the following:

• For fixed and and by increasing the sample size n, we
often get smaller MSE' s.

• For fixed sample size n and by increasing the censoring
values fixed t_0and r, we often get smaller MSE's.

• The largest values of and in each case represent the
complete sample case.

• In progressively type II, for fixed n, we often get smaller
MSE' s by increasing r.
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