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Abstract


Closed form solutions of nonlinear evolution equations (NLEEs) are very imperative in order to better understand the inner mechanism and complexity  of  complex  physical  phenomena.  The  enhanced  [image: ] method is a effectual and proficient mathematical tool which can be used to discover the closed form solutions of NLEEs arising in mathematical physics, applied mathematics and engineering. In this article, the enhanced [image: ] method is recommended and carry out to investigate the closed form solutions of the new fifth order non-linear equation and the new generalized fifth order non-linear equation. The performance of this method is reliable, proficient and possible to obtain a lot of new exact solutions than the existing other methods.
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Introduction



Closed   form   solutions   of   nonlinear   evolution   equations   (NLEEs) are getting importance to study of complex phenomena in the field of science and engineering. NLEEs are frequently appear in various fields, such as plasma physics, geophysics, nuclear physics, biomathematics optical fibers, biomechanics, gas dynamics, chemical reactions, geochemistry etc. Closed form solutions  of  NLEEs  and  its  graphical  representation  reveal  the  inner  mechanism  of  complex  nonlinear  phenomena.  Therefore,  it is a urgent issue and very important to search for more closed form  solutions  to  NLEEs  in  order  to  better  realization  of  the  structure  of  nonlinear  phenomena.  But  till  now  there  is  no  distinctive method to inspect all kinds NLEEs. As a result diverse groups  of  mathematicians,  physicist  and  engineers  have  been  working  vigorously  to  develop  effective  methods  for  which  to  solve all NLEEs. 


For   this   reason,   in   the   recent   years   there   has   been   considerable progress in the development of finding effective methods to search exact solution, such as the nonlinear transform method [1], the first integration method [2], the F-expansion method [3], the Exp-function method [4-6], the Jacobi-elliptic function method [7,8], the Darboux transformation method [9], he  complex  hyperbolic  function  method  [10,11],  the  auxiliary  equation method [12], the Adomian decomposition method [13], the  functional  variable  method  [14],  the  sine  cosine  method  [15],   the   Painleve   expansion   method   [16],   the [image: ] expansion  method  [17,18],  the  variational  method  [19,20],  the  simplified Hirota's method [21], the sine-cosine method [22], the Kudryashov method [23], the extended direct algebraic method [24,25], the modified simple equation method [26-30], the Lie group  symmetry  method  [31],  the    [image: ]- method [32-36],  the  enhanced  [image: ]  method  [37,38],  the  improve      [image: ]method, etc. 

However, these methods use procedures that assume a covariance structure, for example, in generalized estimating equations or generalized linear mixed models [11,12]. An exception to this is the generalized linear transition model used to analyze 2 x 2 binary cross-over data, as introduced by Miyaoka et al. [13]. In this study, we extend the method based on binary p-ordered transition models within the framework of a generalized linear model and compare it to existing methods used to analyze binary 2 x 2 cross-over data. Our method need not assume any covariance structures and can naturally incorporate past observations into the model.





The recently developed the enhanced [image: ] method is  getting  popularity  in  use  because  of  its  directly  advanced  calculation  procedure  and  there  is  possible  to  obtain  large  number  of  solution.  The  objective  of  this  article  is  to  introduce  and  make  use  of  the  enhanced  [image: ]   method  to  extract  fresh  and  further  general  exact  traveling  wave  solutions  to  the  new fifth order nonlinear equation and new generalized fifth order  nonlinear  equation.  The  rest  of  the  article  is  arranged  as  follows:  In  Section  2,  enhanced  [image: ]  method  is  discussed.  In  Section  3,  the  enhanced  [image: ]   method  is  applied  to  examine  the  NLEEs  point  out  above.  In  Section  4,results  and  physical  explanations  and  In  Section  5  conclusions  
are provided.  


Algorithm of the enhanced  [image: ]


In   this   section,   we   explore   the   enhanced  [image: ]-method for finding traveling wave solutions to NLEEs. Let us consider  a  nonlinear  evolution  equation  in  two  independent  variables x and t in the form:


[image: ]


Where u=u(x,t) is  an  unknown  function  of  x    and  t  and  R    is  a  polynomial  of  u(x,t)  and  its  partial  derivatives  which  contains the highest degree nonlinear terms. The essential steps concerning this method are offered in the following:


Step  1:Initiating a compound variable ξ with  the combination of real variables x and t,


[image: ]


Where, specify the speed of the traveling wave.


The   traveling   wave   transformations   (2.2)   permit   us   in  dropping Eq. (2.1) to an ordinary differential equation (ODE) for [image: ] in the form:

[image: ]

Where,  S  is  a  polynomial  in  u(ξ)  and  its  derivatives  with  respect to ξ 



Step  2:  The  solution  of  Eq. (2.3)  can  be  expressed  in  the  following form:


[image: ]

Where,[image: ]   are constants to be determined later, σ=1  μ≠0  and G=G(ξ)satisfies the equation

[image: ]

Step  3: Taking  homogeneous  balance  between  the  highest  order linear term and the nonlinear terms of the highest degree which appear in Eq. (2.3), we obtain the limiting value n.

Step  4:  Substituting  (2.4)  into  (2.3)  together  with  (2.5)  and  then  accumulating  all  terms  of  same  powers  of [image: ] and [image: ]  and setting each coefficient to zero yields a  system  of  algebraic  equations  for  [image: ]    and  ω.  Solving  this  system  of  equations  supplies  the  values  of  the  nknown parameters.


Step  5:  From  the  general  solution  of  equation  (2.5),  we  obtain 

When,[image: ] μ<0,

[image: ]


And



[image: ]

Again when μ>0

[image: ]

And

[image: ]


Where,ξ0  is  an  arbitrary  constant.  At  last,  substituting  [image: ] and solutions (2.6)-(2.9) 
into  (2.4),  we  obtain  more  general  and  some  fresh  traveling wave solutions of (2.1).

Applications of the method

In  this  section,  we  inspect  the  closed  form  solutions  of  the new fifth order non-linear equation and new generalized fifth order non-linear equation with the help of the enhanced   [image: ] method.


Example  1:  In  this  subsection,  we  will  use  the  enhanced    [image: ]-method search for the exact solution to the following new fifth order non-linear equation of the form [21]

[image: ]

The  equation  (3.1)  transfer  to  ODE  in  the  following  form  
using wave transformation (2.2)

[image: ]

Integrating (3.2) with respect to  twice and taking integration 
constant to zero, we get

[image: ]

balancing  the  highest-order  derivative  term um> and   the   highest-order nonlinear term u2 yields n=1  Thus, the solution structure of Eq. (3.3) becomes

[image: ]

Where, [image: ] satisfies Eq. (2.5).

Substituting (3.4) with the equation (2.5) into equation (3.3),we attain a polynomial [image: ] of and[image: ]  From this polynomial we get the coefficients [image: ] of and [image: ] Equating them to zero, we achieve an over-determined system that  contains  thirty  algebraic  equations  (for  simplicity  we  skip  to  display  them).  Solving  this  system  of  algebraic  equation,  we  gt

Set 1: [image: ]
 
Set 2: [image: ]

Set 3: [image: ]

Set 4:   [image: ]

Set 5: [image: ]

Now substituting solution set 1-5 with equation (2.5) into equation (3.4), we get sufficient traveling wave solution to Eq. (3.1) as follows:

When, <, we get the hyperbolic solution,

Profile-1:

[image: ]
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Where [image: ]

Profile -2:
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Where [image: ]


Profile-3:
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[image: ]


Where [image: ]


Profile-4:

[image: ]

Where [image: ]

Profile-5:

[image: ]
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 Where  [image: ]


Again, for μ>0, we get the following trigonometric solution:

Profile-6:
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 Where   [image: ]

Profile-7: 

[image: ]

[image: ]

 Where nnw  [image: ]

Profile-8:

[image: ]

[image: ]

Where,   [image: ]

Profile-9:

[image: ]

[image: ]

Where, [image: ]




[image: ]

[image: ]

Where,   [image: ]


Example   2:   In   this   subsection,   we   will   apply   the   given   
method in section 2 for the exact solution and then the solitary 
wave solution to the following generalized new fifth order non-
linear equation of the form [21]

[image: ]

Where,α and β  are constant

The traveling wave transformation [image: ] switches (3.24) to the ODE in the form

[image: ]

Integrating  (3.2)  with  respect  to  ξ  twice  and  taking 
integration constant to zero, we attain

[image: ]

Balancing  the  highest-order  derivative  term u'''  and  the highest-order nonlinear term u'2  yields  n=1.

Thus, the solution structure of Eq. (3.26) becomes

[image: ]

Where, G=G(ξ)  satisfies Eq. (2.5)

Replacing   (3.27)   with   the   equation   (2.5)   into   equation   (3.26),  we  achieve  a  polynomial  of    [image: ] and [image: ] Equating the coefficient of these to zero, we achieve a system of 
algebraic equation which on solving, we get

Set 1:[image: ]

Set 2:[image: ]

Set 3: [image: ]

Set 4:  [image: ]

Set 5: [image: ]

Now  setting  solution  set  1-5  with  equation  (2.5)  into equation (3.27), we get adequate traveling wave solution to Eq. (3.24) as follows:

When, μ<0, we get the hyperbolic solution,

Type-1:

[image: ]
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Where,[image: ]


Type -2:

[image: ]
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 Where,    [image: ]


Type-3:

[image: ]
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Where,    [image: ]

Type-4:

[image: ]

Where,   


Type-5:

[image: ]

[image: ]

  [image: ]



Type-6:

[image: ]
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   [image: ]


Type-7:

[image: ]
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 Where,    [image: ]


Type-8:

[image: ]
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 Where,   


Type-9:
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 Where,  [image: ]


Type-10:

[image: ]

[image: ]

 Where,  [image: ]


Results and Physical Explanations 

In this section, we have discussed about the obtained solution 
of new fifth order non-linear equation and new generalized fifth 
order non-linear equation. As of the above solution, it has been 
noticed that σ=±1 and μ≠0.  The negative values of μ gives the 
hyperbolic  solutions  [image: ] of the new fifth order non-
linear equation through Profile 1 to 5 and positive values of ±
gives,  trigonometric  solutions  [image: ]   through Profile 6 
to  10.  The  solutions  u2(ξ) and u8(ξ)     demonstrate  the  nature  
of   kink   wave.   Solutions   [image: ]    display   the   
nature  of  singular  kink  wave.  Moreover,  solutions  [image: ] represent the character of periodic traveling wave. The solutions  u4(ξ)
and u6(ξ)  show the nature of soliton solution where u3(ξ) and u9(ξ) express  the  singular  solution.  The  graphical  
illustrations  of  some  obtained  solutions  are  given  below.  The  Figure  1  represents  the  soliton  solution  u4(ξ) in (3.8) for [image: ] 
within [image: ] Singular kink  wave  solution  u5(ξ) for [image: ]
  and  kink shape wave solution of  u8(ξ) for  [image: ] within the interval -10≤x,t≤10
  have been shown in Figure 2 and Figure 3 respectively. Periodic wave solution u19(ξ) in (3.23) for [image: ]
within the interval -10≤x,t≤10    and   -5≤t≤5 are given by Figure 4.



[image: ]

Figure 1:  Soliton solution u4(ξ)  in (3.8) for 

 [image: ]



Again from the solutions of the new generalized fifth order 
non-linear equation, it is observed that the negative values 
of μ suggest the hyperbolic solutions [image: ]     through  
Type  1  to  5  and  the  positive  values  of  μ , recommend  the  
trigonometric  solutions  [image: ]   through Type 6 to 10.

The solutions [image: ] demonstrate  the  kink  wave.  The  
solutions [image: ]   are  singular  kink  wave  
solution.  Furthermore,  the  solutions  [image: ]      are  the  
periodic  traveling  wave  solution  where  the  solutions  u23(ξ) and u29(ξ) represent singular solution. The solutions u24(ξ)  
express the well-known singular soliton. Figure 5 shows the graphical  illustrations  of  singular  soliton u24(ξ) in (3.31) for [image: ]   
within the interval -5≤x≤5 and -3≤t≤3  The  Singular  kink  wave  solution u27(ξ) in (3.34) for 
[image: ]   within the  interval -5≤x,t≤5   is  given  in  Figure  6.  For  simplicity  we  ignored the others figures.




[image: ]

Figure 2:  Singular kink wave solution u5(ξ)  in (3.9) for 

  [image: ]




[image: ]

Figure 3:  Kink shape wave solution u8(ξ) in (3.12) for

  [image: ] 





[image: ]

Figure 4:   Periodic wave solution   u19(ξ)  in (3.23) for 

  [image: ] 








[image: ]

Figure 5:  Soliton solution  u24(ξ) in (3.31) for

  [image: ] 





[image: ]

Figure 6:  Singular kink solution  u(27)4(ξ) in (3.34) for

  [image: ] 




Conclusion

In  this  article,  enhanced  [image: ]   method  has  been  successfully applied to find the closed form wave solutions of new fifth order nonlinear equation and new generalized fifth order nonlinear equation. The solutions are verified to check the  correctness  of  the  solutions  by  putting  them  back  into  the  original  equation  and  found  correct.  The  key  advantage  of  the  enhanced [image: ] method  against  other  methods  is  that the method provides more general and huge amount of new closed  form  wave  solutions.  The  closed  form  solutions  have  its  reat  importance  to  interpretation  the  inner  mechanism  of  the  complex  physical  phenomena.  Therefore  this  method  is  very  concise and straightforward to handling and can be applied for finding closed form solutions of other NLEEs arising in science and engineering. 
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